Меню

Как решать неравенства с помощью интервалов. Решение рациональных неравенств методом интервалов

Дополнительные элементы крыши

Метод интервалов - это универсальный способ решения практически любых неравенств, которые встречаются в школьном курсе алгебры. Он основан на следующих свойствах функций:

1. Непрерывная функция g(x) может изменить знак только в той точке, в которой она равна 0. Графически это означает, что график непрерывной функции может перейти из одной полуплоскости в другую, только если пересечет ось абсцисс (мы помним, что ордината любой точки, лежащей на оси ОХ (оси абсцисс) равна нулю, то есть значение функции в этой точке равно 0):

Мы видим, что функция y=g(x), изображенная на графике пересекает ось ОХ в точках х= -8, х=-2, х=4, х=8. Эти точки называются нулями функции. И в этих же точках функция g(x) меняет знак.

2. Функция также может менять знак в нулях знаменателя - простейший пример хорошо известная функция :

Мы видим, что функция меняет знак в корне знаменателя, в точке , но при этом не обращается в ноль ни в одной точке. Таким образом, если функция содержит дробь, она может менять знак в корнях знаменателя.

2. Однако, функция не всегда меняет знак в корне числителя или в корне знаменателя. Например, функция y=x 2 не меняет знак в точке х=0:

Т.к. уравнение x 2 =0 имеет два равных корня х=0, в точке х=0 функция как бы дважды обращается в 0. Такой корень называется корнем второй кратности.

Функция меняет знак в нуле числителя, , но не меняет знак в нуле знаменателя: , так как корень - корень второй кратности, то есть четной кратности:


Важно! В корнях четной кратности функция знак не меняет.

Обратите внимание! Любое нелинейное неравенство школьного курса алгебры, как правило, решается с помощью метода интервалов.

Предлагаю вам подробный , следуя которому вы сможете избежать ошибок при решении нелинейных неравенств .

1. Для начала необходимо привести неравенство к виду

Р(х)V0,

где V- знак неравенства: <,>,≤ или ≥. Для этого необходимо:

а) перенести все слагаемые в левую часть неравенства,

б) найти корни получившегося выражения,

в) разложить левую часть неравенства на множители

г) одинаковые множители записать в виде степени.

Внимание! Последнее действие необходимо сделать, чтобы не ошибиться с кратностью корней - если в результате получится множитель в четной степени, значит, соответствующий корень имеет четную кратность.

2. Нанести найденные корни на числовую ось.

3. Если неравенство строгое, то кружки, обозначающие корни на числовой оси оставляем "пустыми", если неравенство нестрогое, то кружки закрашиваем.

4. Выделяем корни четной кратности - в них Р(х) знак не меняет.

5. Определяем знак Р(х) на самом правом промежутке. Для этого берем произвольное значение х 0 , которое больше большего корня и подставляем в Р(х) .

Если P(x 0)>0 (или ≥0), то в самом правом промежутке ставим знак "+".

Если P(x 0)<0 (или ≤0), то в самом правом промежутке ставим знак "-".

При переходе через точку, обозначающую корень четной кратности знак НЕ МЕНЯЕТСЯ.

7. Еще раз смотрим на знак исходного неравенства, и выделяем промежутки нужного нам знака.

8. Внимание! Если наше неравенство НЕСТРОГОЕ, то условие равенства нулю проверяем отдельно.

9. Записываем ответ.

Если исходное неравенство содержит неизвестное в знаменателе , то также переносим все слагаемых влево, и приводим левую часть неравенства к виду

(где V- знак неравенства: < или >)

Строгое неравенство такого вида равносильно неравенству

НЕстрогое неравенство вида

равносильно системе :

На практике, если функция имеет вид , то поступаем следующим образом:

  1. Находим корни числителя и знаменателя.
  2. Наносим их на ось. Все кружки оставляем пустыми. Затем, если неравенство не строгое, то корни числителя закрашиваем, а корни знаменателя всегда оставляем пустыми.
  3. Далее следуем общему алгоритму:
  4. Выделяем корни четной кратности (если числитель и знаменатель содержат одинаковые корни, то считаем, сколько раз встречаются одинаковые корни). В корнях четной кратности смены знака не происходит.
  5. Выясняем знак на самом правом промежутке.
  6. Расставляем знаки.
  7. В случае нестрого неравенства условие равенства условие равенства нулю проверяем отдельно.
  8. Выделяем нужные промежутки и отдельно стоящие корни.
  9. Записываем ответ.

Чтобы лучше понять алгоритм решения неравенств методом интервалов , посмотрите ВИДЕОУРОК, в котором подробно разбирается пример решения неравенства методом интервалов .

Как решать неравенства методом интервалов (алгоритм с примерами)

Пример . (задание из ОГЭ) Решите неравенство методом интервалов \((x-7)^2< \sqrt{11}(x-7)\)
Решение:

Ответ : \((7;7+\sqrt{11})\)

Пример . Решите неравенство методом интервалов \(≥0\)
Решение:

\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\) \(≥0\)

Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.

Преобразовываем скобки, с учетом того, что четвертая степень - четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет).
\((4-x)^3=(-x+4)^3=(-(x-4))^3=-(x-4)^3\)
\((6-x)^4=(-x+6)^4=(-(x-6))^4=(x-6)^4\)
Вот так. Теперь возвращаем скобки «на место» уже преобразованными.

\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≥0\)

Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения

\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≤0\)

Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов.

\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\)

Расставим точки на оси, знаки и закрасим нужные промежутки.

В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка - тоже решение неравенства.
Запишем ответ.

Ответ : \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)

Пример. (Задание из ОГЭ) Решите неравенство методом интервалов \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:

\(x^2 (-x^2-64)≤64(-x^2-64)\)

Слева и справа есть одинаковые – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону

\(x^2 (-x^2-64)-64(-x^2-64)≤0\)

\((-x^2-64)(x^2-64)≤0\)

Вынесем минус в первой скобки и разложим на множители вторую

\(-(x^2+64)(x-8)(x+8)≤0\)

Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение.
Поделим неравенство так же на \(-1\) , чтобы избавиться от минуса.

\((x-8)(x+8)≥0\)

Теперь можно применять метод интервалов

\(x=8;\) \(x=-8\)

Запишем ответ

Ответ : \((-∞;-8]∪∪{3}∪ (на интервале (−6, 4) знак не определяем, так как он не является частью области определения функции). Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и −8 , и вычислим в них значение функции f :

Если возникли вопросы как было выяснено, какими являются вычисленные значения функции, положительными или отрицательными, то изучите материал статьи сравнение чисел .

Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

В ответ записываем объединение двух промежутков со знаком −, имеем (−∞, −6]∪(7, 12) . Обратите внимание, что −6 включено в ответ (соответствующая точка сплошная, а не выколотая). Дело в том, что это не нуль функции (который при решении строгого неравенства мы бы не включили в ответ), а граничная точка области определения (она цветная, а не черная), при этом входящая в область определения. Значение функции в этой точке отрицательно (о чем свидетельствует знак минус над соответствующим промежутком), то есть, она удовлетворяет неравенству. А вот 4 включать в ответ не нужно (как и весь промежуток ∪(7, 12) .

Список литературы.

  1. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  2. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  3. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  4. Кудрявцев Л. Д. Курс математического анализа (в двух томах): Учебник для студентов университетов и втузов. – М.: Высш. школа, 1981, т. 1. – 687 с., ил.