Меню

Мотивации как фактор организации поведения. Физиологические теории мотиваций

Дополнительные элементы крыши

В которой она используется.

Мотивация - вызванное той или иной потребностью эмоционально окрашенное состояние организма, избирательно объединяющее нервные элементы различных уровней мозга. На основе мотиваций формируется поведение, ведущее к удовлетворению исходной потребности.

Проблема мотивации занимает ведущее место среди других фундаментальных проблем высшей нервной деятельности. Если еще в середине нашего столетия мотивации находились целиком в сфере научных интересов психологов, то в последние годы мотивации стали предметом пристального исследования физиологов. В изучении мотиваций наметился значительный прогресс. Традиционный поведенческий и электрофизиологический подходы все активнее соединяются с изучением молекулярных механизмов мотиваций. Серьезному исследованию подверглись социальные мотивации человека.

Мотивация как основа целенаправленной деятельности . Каждый, кто внимательно наблюдал поведение живых существ, не раз обращал внимание на то, что среди разнообразных форм поведения встречаются такие, когда человек или животное не только реагируют на внешние воздействия, но активно ищут определенные объекты внешней среды. Поиск этот осуществляется весьма настойчиво, с большими затратами энерги и и преодолением различных препятствий на пути к цели.

Такие формы активной целенаправленной деятельности живых существ были названы И. П. Павловым основными влечениями организма.

К числу основных влечений, направленных на обладание определенными раздражающими предметами, И. П. Павлов в первую очередь относил влечение голода и ориентировочно-исследовательскую деятельность. Нетрудно заметить, что основные влечения организма представляют собой именно такую форму поведенческой деятельности, которая в отличие от рефлекторной деятельности как реакции на внешние стимулы, напротив, направлена на поиск специальных раздражителей внешней среды.

Термин "влечение" в последние годы в отечественной литературе употребляется редко. Чаще используются его синонимы - "побуждение", или "мотивация" (movere - движение, побуждение). В зарубежной литературе часто применяется понятие "драйв", соответствующее понятию "основные влечения" организма.

КЛАССИФИКАЦИЯ МОТИВАЦИЙ

Различают биологические и социальные мотивации.

Биологические мотивации , они же основные влечения, или низшие, простые, первичные мотивации. Биологические мотивации направлены на удовлетворение ведущих биологических потребностей индивидуумов по сохранению их вида или рода. К ним относятся мотивации голода, жажды, страха, агрессии, половые влечения, различные родительские, в частности материнские, температурные и другие влечения. Близко к этой группе мотиваций примыкают так называемые позывы, например к мочеиспусканию или дефекации.

Ведущими биологическими потребностями являются: 1) пищевая потребность, характеризующаяся уменьшением в организме уровня питательных веществ; 2) питьевая потребность, связанная с повышением осмотического давления; 3) температурная потребность - при изменении температуры тела; 4) половая потребность etc.

Поскольку общие потребности организма многопараметренны, животные могут одновременно испытывать несколько потребностей. Однако всегда имеется ведущий параметр общей метаболической потребности - доминирующая потребность, наиболее важная для выживания особи или ее рода, которая строит поведенческий акт, направленный на ее удовлетворение.

Социальные мотивации , они же высшие, или вторичные, строятся на основе врожденных биологических мотиваций путем общения индивидуумов со средой обитания, родителями и окружающими их живыми существами, а у человека - и с социальной средой. В формировании социальных мотиваций значительное место принадлежит воздействию различных факторов внешней среды, обучению и, следовательно, механизмам памяти. Все эти факторы могут значительно изменить природу лежащих в основе социальных биологических мотиваций. Достаточно сравнить голод животного с голодом воспитанного человека. В отличие от животного, которое будет использовать все свои биологические, в основном физические, способности для удовлетворения потребности пищи, голодный человек может долго стоять перед заполненной самыми привлекательными явствами витриной магазина, не производя никакого правонарушающего действия. На основе воспитания удовлетворение пищевых, половых и других биологических потребностей у человека, как правило, приурочено к определенному месту и времени.

Социальные мотивации человека, такие как стремление к образованию, определенного рода профессии, предметам искусства, литературы и быта, в отличие от биологических мотиваций также формируются в процессе общественного воспитания. Они обусловливаются общественными нормами морали и права и соответствующими законодательствами, присущими любому общественно-экономическому строю.

Как биологические, так и социальные мотивации определяют практически все формы выраженной целенаправленной деятельности живых существ, строящейся на основе иерархии различных биологических и социальных потребностей. Ведущая в биологическом или социальном плане потребность становится доминирующей, остальные выстраиваются по отношению к ней в определенной иерархической зависимости. После удовлетворения ведущей потребности доминирующей становится другая, наиболее важная в биологическом или социальном значении потребность etc. В формировании мотиваций и их иерархической смене ведущую роль играет принцип доминанты, сформулированный А. А. Ухтомским.

Ниже будут рассмотрены свойства и механизмы биологических мотиваций. Социальные мотивации человека являются предметом курса психологии.

ОБЩИЕ СВОЙСТВА БИОЛОГИЧЕСКИХ МОТИВАЦИЙ

Биологические мотивации характеризуются рядом общих свойств.

ГЕНЕТИЧЕСКАЯ ДЕТЕРМИНИРОВАННОСТЬ

Биологические мотивации, будучи тесно связанными с метаболическими потребностями организма, строятся на основе врожденных, генетически детерминированных механизмов. Их проявление не требует обучения, так как определяется активностью специальных генов, созревающих или освобождающихся от тормозных влияний на определенных стадиях онтогенетического развития. При этом в качестве основных факторов ресупрессии генетического аппарата выступают в первую очередь различные метаболические потребности и те информационные молекулы, которые эти потребности сопровождают.

СООТНОШЕНИЯ ВНУТРЕННИХ И ВНЕШНИХ ФАКТОРОВ

Непосредственной причиной биологических мотиваций являются преимущественно раздражители внутренней среды, связанные с изменением различных показателей гомеостаза, определяющих нормальное течение обменных процессов в организме, например, уровня питательных веществ, осмотического давления, состояния половых клеток, различных гормонов etc. Эти в различной степени выраженные изменения тех или иных метаболических показателей, будучи в значительной степени гуморальными изменениями, выступают в роли исходных стимулов биологических мотиваций.

Наряду с этим биологические мотивации могут активироваться или, наоборот, тормозиться специальными внешними "ключевыми" или "освобождающими" факторами внешней среды, например, видом или запахом противника или полового партнера, пищи или других удовлетворяющих различные потребности раздражителей. Например, накормленная обезьяна-самец может спокойно дремать в клетке, но поведение животного резко активизируется, если в клетку впускают рецептивную самку. Ее вид, запах и другие раздражители стимулируют у самца половую мотивацию. Вместе с тем следует иметь в виду, что в основе мотиваций, вызываемых внешними стимулами, всегда лежат врожденные, наследственно обусловленные внутренние механизмы. Например, агрессии способствуют определенные изменения нервных центров под влиянием нейрогормонов адреналина и норадреналина, половым реакциям - первичное воздействие половых гормонов на нервные клетки etc.

Соотношение внешних и внутренних факторов в возникновении биологических мотиваций в разных условиях может меняться. Например, голод в одних случаях стимулируется первичными метаболическими изменениями внутри организма, в других - видом или запахом аппетитно приготовленной пищи.

Биологические мотивации нередко относятся к разряду сложных безусловных рефлексов, или инстинктов. Вместе с тем биологические мотивации в отличие от рефлекторных реакций на внешние стимулы представляют такую форму деятельности, когда животные и человек, стимулируемые внутренними потребностями или окружающими факторами, направленно ищут специальные внешние раздражители. Именно настойчивый поиск отличает мотивационные реакции от рефлекторных.

СИСТЕМНАЯ ОРГАНИЗАЦИЯ МОТИВАЦИЙ

Мотивации как биологического, так и социального плана в целостной деятельности организма всегда являются компонентом системной архитектоники поведенческого акта. Мотивации играют существенную роль в организации таких ответственных системных механизмов, как стадия афферентного синтеза, принятия решения и предвидения потребного результата - акцептора результата действия. Не меньшее значение мотивация имеет в формировании эфферентной программы поведения - стадии эфферентного синтеза.

Системогенез мотиваций . Будучи неотъемлемым компонентом системной организации поведенческих актов, мотивации в своем становлении в развивающемся организме подлежат общим закономерностям развития функциональных систем - процессам системогенеза . В процессе онтогенетического развития отдельных функциональных систем мотивации, будучи их составным компонентом, созревают избирательно и последовательно. Так, у новорожденного ребенка уже к моменту рождения формируются мотивации голода и жажды; затем на основе обучения и влияния внешних факторов проявляются мотивации страха, температурные мотивации, формируются позывы; в период полового созревания проявляется половое влечение, и уже во взрослом состоянии - родительские мотивации.

ТЕОР ИИ МОТИВАЦИЙ

ОБЩИЕ ТЕОР ИИ

Наиболее распространены две крайние общие теор ии о природе мотиваций. Авторы одной теор ии считают, что мотивация определяется внутренней, врожденной , энерги ей , которая реализуется в специальное поведение даже при отсутствии внешних, "ключевых", раздражителей. Другие авторы полагают, что внутренние мотивационные программы развертываются только при наличии определенных направляющих факторов внешней среды. Некоторые авторы допускают, что направляющими факторами мотиваций могут быть и определенные внутренние, врожденные и приобретенные в индивидуальной жизни животных модели поведения.

В последнее время большинство исследователей склоняются к компромиссной точке зрения, согласно которой любая мотивация имеет два аспекта. Один из них чисто энергетический, побуждающий фактор, а другой - фактор, направляющий животных к цели.

Среди общих теор ий мотиваций следует отметить теор ию "снижения влечений", согласно которой мотивации определяются стремлением человека и животных к уменьшению неприятных эмоциональных ощущений, сопровождающих ту или иную метаболическую потребность. Согласно этой теор ии, голодные влечения, например, рассматриваются как стремление субъектов избавиться от "голодных" болей, возникающих в эпигастральной области при сокращениях пустого желудка; жажда - как стремление избавиться от неприятных ощущений в ротовой полости и в глотке etc. В развитие этой точки зрения сформулировано представление о наличии в мозге двух реципрокных систем: системы поощрения и наказания. В указанной теор ии "снижения влечения" в происхождении эмоциональных ощущений ведущую роль отводят нервным импульсациям, поступающим в мозг от определенных периферических органов.

ФИЗИОЛОГИЧЕСКИЕ ТЕОР ИИ

Американский физиолог У. Кэннон первый сформулировал представление о роли сигнализации различных отделов пищеварительного тракта в происхождении мотиваций голода и жажды и перешел от изучения чисто поведенческой стороны мотиваций к изучению их внутренних механизмов. Однако эта точка зрения не нашла убедительного экспериментального подтверждения. Отечественным физиологом Н.Ф. Поповым было показано, что при полной денервации пищеварительного тракта у животных сохраняются мотивации голода. Клинические наблюдения тоже указывали на то, что после тотальной резекции желудка больные по-прежнему испытывают чувство голода. Все эти наблюдения способствовали выявлению роли гуморальных факторов в возникновении биологических мотиваций. И.П. Павлов первый указал на роль "голодной крови" в происхождении мотивации голода. Тем не менее наблюдения, в первую очередь на сросшихся близнецах, имеющих общее кровообращение и различную иннервацию, поставили под сомнение ведущее значение гуморальных факторов в формировании биологических мотиваций. Попытки все более углубленного анализа мотивационных возбуждений привели к необходимости каким-то образом объединить нервные и гуморальные механизмы, участвующие в их возникновении, в единый нервно-гуморальный механизм. Так возникли концепции множественных факторов формирования мотиваций.

К середине нашего столетия интерес исследователей в изучении механизмов мотиваций постепенно переместился к изучению роли ЦНС.

По аналогии с "центральным возбудительным состоянием", которое было сформулировано Ч. Шеррингтоном, возникло представление о "центральном мотивационном состоянии". Французский исследователь П. Делл обосновал точку зрения, согласно которой "центральное мотивационное состояние" определяется неспецифическими восходящими активирующими влияниями ретикулярной формации на кору мозга. Близка к этим представлениям "теор ия активации эмоции" американского физиолога Р. Линдсли, который также считает, что эмоциональные реакции различного качества строятся на основе восходящих активирующих влияний ретикулярной формации ствола мозга.

Американский исследователь Е. Стеллар сформулировал теор ию, которая связывает формирование мотиваций с деятельностью специальных мотивациогенных гипоталамических центров головного мозга, на которые оказывают влияние кора, тормозные гипоталамические центры, чувствительные стимулы, гуморальные факторы etc. Эта точка зрения нашла подтверждение в многочисленных исследованиях. Так, при электрическом или химическом раздражении заднелатерал ьного отдела гипоталамуса в области свода оказалось возможным получить у коз выраженную питьевую реакцию. При стимуляции латерал ьного отдела гипоталамуса у различных животных возникают направленные пищевые реакции. Эти и другие эксперименты позволили говорить о наличии на уровне гипоталамуса так называемых мотивациогенных центров голода и жажды, агрессии и страха etc.

Многими исследователями показано, что в формировании мотиваций различного биологического качества наряду с гипоталамическими структурами принимают участие лимбические и ретикулярные структуры мозга, включая различные отделы коры большого мозга.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ БИОЛОГИЧЕСКИХ МОТИВАЦИЙ

Ведущую роль в формировании биологических мотиваций играет гипоталамическая область мозга. Здесь осуществляются процессы трансформации биологической (метаболической) потребности в мотивационное возбуждение. Гипоталамические структуры мозга на основе их влияний на другие отделы мозга определяют формирование обусловленного мотивацией поведения.

ТРАНСФОРМАЦИЯ ВНУТРЕННЕЙ ПОТРЕБНОСТИ В МОТИВАЦИОННОЕ ВОЗБУЖДЕНИЕ

Как показывают физиологические наблюдения, внутренняя метаболическая потребность находит свое отражение прежде всего в деятельности определенных внутренних органов и изменении состава крови.

Нервные и гуморальные сигналы о доминирующей биологической потребности адресуются специальным зонам гипоталамуса. Например, нейрон ы, воспринимаюшие сигнализацию от пустого желудка, и факторы "голодной крови" обнаружены микроэлектродным методом в области латерал ьного гипоталамуса (Б.В. Журавлев). Отдельные нейрон ы этой области проявляют отчетливые реакции на введение как пищи голодным животным в желудок, так и глюкозы в кровь.

СВОЙСТВА МОТИВАЦИОННЫХ ЦЕНТРОВ

Центры гипоталамуса обладают рядом свойств.

1. Особенность нейрон ов гипоталамической области состоит в их тесных функциональных контактах с капиллярами и в специфике метаболических процессов. Последнее заключается в том, что каждая группа нейрон ов гипоталамической области использует в своем нормальном метаболизме только определенные гуморальные факторы и при изменении их содержания избирательно приходит в состояние возбуждения. Таким образом, эти нейрон ы обладают свойствами рецепции определенной внутренней потребности.

Благодаря специфическому метаболизму различные участки гипоталамической области и составляют так называемые мотивациогенные центры .

В настоящее время в области вентромедиальных ядер гипоталамуса и в латерал ьных его отделах обнаружены нейрон ы, избирательно чувствительные к содержанию в крови глюкозы. Эти нейрон ы проявляют подчеркнутую специализацию. Одни нейрон ы активируются при снижении уровня глюкозы в крови, другие, наоборот, при возрастании ее содержания. В области супраоптических и паравентрикулярных ядер гипоталамуса обнаружены нейрон ы, чувствительные к уровню осмотического давления крови, в области заднедорсального гипоталамуса - к норадреналину etc. Электрическая стимуляция именно этих областей гипоталамуса вызывает соответственно пищевые, питьевые мотивации и мотивации страха и агрессии.

На основе рецептор ных свойств мотивациогенные центры гипоталамической области обладают способностью к трансформации внутренней, преимущественно гуморальной, потребности в процесс нервного возбуждения.

2. Процесс возбуждения мотивациогенных центров гипоталамуса осуществляется, как правило, ритмически. Возбуждение в составляющих эти центры клетках появляется не сразу при возникновении той или иной внутренней потребности, а благодаря постепенному возрастанию их возбудимости до критического уровня (триггерный механизм). При достижении этого уровня клетки начинают посылать ритмические разряды и проявляют свою специфическую активность до удовлетворения потребности (см. рис.).

Рис. Триггерный механизм возбуждения нейрон а гипоталамуса под влиянием метаболической потребности (а) и прекрашение импульсной активности при ее удовлетворении (б). Красной линией обозначено изменение возбудимости нейрон а.

3. Гипоталамические мотивациогенные центры имеют обширные связи с другими отделами мозга и в первую очередь с лимбическими и ретикулярными образованиями, а через них - с корой большого мозга. Из этого следует, что возникшее первично в нейрон ах гипоталамической области мотивационное возбуждение может широко распространяться практически на все области мозга.

ОТРАЖЕНИЕ МОТИВАЦИИ В ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ МОЗГА

Доминирующая мотивация находит характерное отражение в электроэнцефалограмме. Особенно отчетливо биологические мотивации выявляются у животных, находящихся под уретановым наркозом.

Особенность уретана как наркотика состоит в том, что под уретановым наркозом у животных избирательно блокируется только ЭЭГ-активация бодрствующего состояния, но при этом сохраняются восходяшие активирующие влияния ретикулярной формации на кору мозга, например, при ноцицептивном раздражении животных. Точно так же под уретановым наркозом удается выявить активацию коры большого мозга, обусловленную голодным состоянием животных. У кошки после 2-суточного голодания при погружении в уретановый наркоз наблюдается избирательная ЭЭГ-активация передних отделов коры мозга, в то время как теменно-затылочные отделы мозга проявляют медленную высокоамплитудную ЭЭГ-активность, характерную для состояния наркотического сна. Тот факт, что эта активация ЭЭГ действительно отражает мотивацию голода, доказывают следующие опыты. После искусственного кормления животных, обнаруживающих под уретановым наркозом избирательную активацию ЭЭГ передних отделов коры мозга, при внутривенном введении раствора глюкозы или молока в ротовую полость и желудок активация ЭЭГ передних отделов коры мозга сменяется медленной высокоамплитудной активностью, и такая электрическая активность регистрируется во всех отделах коры мозга. Характерно, что у животных, погруженных в уретановый наркоз, немедленно после кормления во всех отделах коры мозга также регистрируется медленная высокоамплитудная электрическая активность.

Градуальность формирования мотивации . Эксперименты показали, что распространение мотивационного возбуждения на различные структуры мозга происходит градуально в зависимости от выраженности исходной потребности (см. рис.).


Рис. Динамика распространения возбуждения из мотивациогенного центра гипоталамуса (I) при нарастании силы его раздражения. А - возбуждение локализовано в мотивациогенном центре (1) и перегородке (2); Б, В, Г - возбуждение последовательно распространяется в гиппокамп (3), амигдалоидную область (4), ретикулярную формацию ствола мозга (5) и выходит на кору (6), формируя целенаправленное поведение.

При слабых раздражениях латерал ьного гипоталамуса у накормленных животных сначала наблюдается активация электрической активности лимбических образований мозга - ядер перегородки, гиппокампа, миндалины. При этом медленная высокоамплитудная электрическая активность исходного состояния сменяется либо высокочастотной низкоамплитудной активностью (реакция десинхронизации), либо появлением упорядоченной тета-активности. При увеличении раздражения указанных центров наблюдаются регионарные изменения электрической активности преимущественно передних отделов коры большого мозга. Наконец, при еще более сильном раздражении латерал ьных отделов гипоталамуса, так же как и при длительном голодании, за счет восходящих активирующих влияний ретикулярной формации среднего мозга наблюдается генерализованн ая активация ЭЭГ всей коры большого мозга.

Характерно, что при распространении восходящих активирующих влияний гипоталамических мотивациогенных центров на лимбические структуры мозга у животных проявляются только ориентировочно-исследовательские реакции. При распространении этих влияний на кору мозга животные проявляют целенаправленные мотивационные реакции - употребляют находяшуюся перед ними пищу, осуществляют оборонительные реакции etc.

Таким образом, в основе биологических мотиваций любого качества лежат восходящие активирующие влияния специфических гипоталамических центров на кору большого мозга. Эти влияния устраняются после удовлетворения потребности. Именно эти восходящие активирующие влияния гипоталамических центров, обусловленные той или иной внутренней потребностью, составляют энергетический компонент мотивационного состояния.

МОТИВАЦИЯ КАК ОСОБОЕ СОСТОЯНИЕ МОЗГА

Взаимоотношения подкорковых образований и коры головного мозга при мотивациях более сложные. Различные отделы коры и другие структуры мозга в свою очередь оказывают нисходящие влияния на инициативные мотивациогенные центры гипоталамуса. Кроме этого, между корой и подкорковыми образованиями постоянно циркулируют реверберирующие возбуждения.

Все это указывает на то, что мотивационное состояние представляет собой качественно особое, интегрированное состояние мозга, при котором на основе восходящих активирующих влияний гипоталамических центров каждая структура мозга вносит свои активирующие или тормозные влияния и тем самым создает специфическую для каждой мотивации интеграцию, приводящую в каждом случае к специфической форме целенаправленной деятельности.

Доминирующая мотивация представляет собой исходное, качественно особое состояние организма, которое определяет его целенаправленную деятельность и характер реагирования на действие многочисленных раздражителей внешней среды.

Мотивационное состояние можно рассматривать как активный "фильтр", определяющий подчеркнутую и избирательную реактивность животных только по отношению к тем раздражителям внешней среды, которые способствуют или препятствуют удовлетворению лежащей в основе каждой мотивации потребности.

МОТИВАЦИИ И ЭМОЦИИ

Каждая мотивация субъективно переживается, т. е. сопровождается специфической эмоциональной реакцией. Эмоциональные ощушения каждой мотивации подчеркнуто специфичны.

Биологический смысл субъективного переживания мотиваций заключается прежде всего в оценке индивидуумом лежаших в их основе потребностей. Ни одно живое сушество никогда не спутает субъективное ощущение голода с субъективным переживанием страха или полового возбуждения.

Субъективные переживания метаболических потребностей всегда носят неприятный (отрицательный) характер. Биологический смысл отрицательных эмоций заключается в стимулировании поиска потребных веществ.

Субъективное переживание, сопровождающее мотивацию, имеет важный информационный смысл , позволяя животным быстро и надежно, без анализа деталей оценивать каждую потребность.

Следует, однако, иметь в виду, что отрицательные эмоциональные ощущения в чистом виде сопровождают потребность только на ранних этапах онтогенетического развития и, возможно, только при первом возникновении соответствующей потребности. По мере неоднократного удовлетворения потребности, что как раз и имеет место в жизни каждого индивидуума, эмоциональное переживание потребности несколько изменяет свой знак. Согласно биологической теор ии эмоций П. К. Анохина, удовлетворение потребности всегда сопровождается эмоцией положительного знака, которая как бы санкционирует успех поисковой деятельности. По мере неоднократного удовлетворения однотипных потребностей и получения положительных эмоциональных ощущений каждое животное запоминает эти ощущения, и они по опережающему принципу начинают включаться в структуру мотивационного возбуждения. Формируется так называемый аппетит, или предвидение, субъектом, испытывающим ту или иную потребность, положительной эмоции, которая может быть получена при удовлетворении этой потребности.

Аппетит является мощным стимулом целенаправленной деятельности. Предвидение положительной эмоции заставляет животных порой даже более активно, чем на основе только отрицательных эмоциональных ощущений, преодолевать препятствия для удовлетворения ведущей потребности. Кроме того, аппетит определяет избирательную направленность мотивации. Эта избирательность влечения к определенным раздражителям обусловливается, с одной стороны, избирательностью метаболической потребности. Например, в случае осмотической потребности она может быть обусловлена недостатком солей или воды или различных их комбинаций, что приводит к поиску недостающих веществ. С другой стороны, избирательность аппетита обусловлена в значительной степени предвидением определенных свойств раздражителей, наиболее часто удовлетворяющих соответствующую потребность, т. е. определенными привычками. Особенно ярко демонстрируют это свойство аппетита национальные привычки к определенному виду пищи.

Итак, эмоции являются субъективным переживанием потребности и ее удовлетворения, средством оценки потребности и активации мотивационного поведения. Аппетит как субъективное предвидение положительной эмоции подкрепления определяет избирательность мотивационного поведения.

СВОЙСТВА МОТИВАЦИОННОГО СОСТОЯНИЯ

ХИМИЧЕСКАЯ СПЕЦИФИКА

Мотивационные возбуждения различного биологического качества, например голод, жажда или страх, характеризуются одинаковыми изменениями электрической активности мозговых структур типа ЭЭГ-активации. Однако, несмотря на однотипность электрических характеристик, каждая мотивация обладает подчеркнутой спецификой. Эта специфика, как указывалось выше, проявляется прежде всего в специфике эмоциональных ощущений, сопровождающих каждую мотивацию. Кроме того, специфика мотивации заключается в особой корково-подкорковой интеграции возбуждений, при которой в каждую мотивацию в разной степени вносят вклад различные структуры мозга.

Специфика мотивационного возбуждения проявляется также и в особенностях химических механизмов различных мотиваций. Оборонительная мотивация страха у животных, например, избирательно блокируется альфа-адреноблокатором аминазином (В.А. Гавличек, А.И. Шумилина), а пищевые мотивации голодных животных - холинолитиками - атропином или амизилом. Подтверждением этого служит следующий эксперимент.

Кролика кормят в определенной комнате, предлагая предпочитаемую им пищу: капусту и морковь. В результате неоднократных кормлений кролик охотно идет в экспериментальную комнату и проявляет в ней выраженную поведенческую пищевую активность. Картина совершенно изменяется после того, как кролику в комнате, где он предварительно получал пищу, было нанесено несколько электрокожных раздражений. После этого кролик перестает дотрагиваться до еды, несмотря на то что голоден, сидит постоянно в углу, сжавшись в комок. У кролика доминирует мотивация страха, которая полностью подавляет пищевую мотивацию. Однако после внутривенного введения кролику аминазина из расчета 0,5 мг/кг животное немедленно утрачивает мотивацию страха и устремляется к пище, которую тут же начинает активно поедать. Объяснение этого эксперимента очевидно и заключается в том, что аминазин избирательно блокирует у кроликов мотивацию страха и высвобождает ранее заторможенную страхом мотивацию голода. Следовательно, опыт указывает на то, что мотивации голода и страха строятся на различных химических механизмах.

Химическая избирательность пищевой и оборонительной мотивации проявляется и в следующем эксперименте.

Кошку после 2-суточной пищевой деприваци и погружают в уретановый наркоз. На ЭЭГ наблюдается избирательная активация передних отделов коры мозга, в то время как в теменно-затылочных отделах мозга регистрируется медленная высокоамплитудная активность, характерная для состояния наркотического сна. При нанесении голодным животным, находящимся под уретановым наркозом, электрического раздражения седалищного нерва наблюдается генерализованн ая ЭЭГ-активация всех отделов коры мозга. Введение аминазина блокирует только эту генерализованн ую активацию, вызванную ноцицептивным раздражением, и не действует на "голодную" активацию передних отделов коры мозга. "Голодная" активация исчезает только после введения холинолитиков - амизила или атропина.

Приведенные опыты указывают на специфику химических механизмов, лежащих в основе оборонительной и пищевой мотивации животных.

Фармакологические вещества позволяют осуществлять своеобразную "химическую препаровку" различных мотивационных состояний животных, избирательно блокируя множественные восходящие активирующие влияния подкорковых образований на кору мозга, каждое из которых определяет различное мотивационное состояние.

Механизмы химической специфики мотивационных возбуждений различного биологического качества сложнее.

Не у всех голодных животных холинолитики блокируют пищевую мотивацию; мотивация страха устраняется адренолитиками не у всех животных. Как пишевую мотивацию голодных кроликов, вызванную электрическим раздражением через вживленный электрод "центра голода" латерал ьного гипоталамуса, так и оборонительную мотивацию, вызванную электрическим раздражением вентромедиального гипоталамуса, объединяют адренергические, холинергические и дофаминергические химические механизмы (В.Г. Зилов). При разных мотивациях указанные нейромедиаторы вовлекаются в различных комбинациях, локализуясь в различных структурах мозга. Иными словами, химическая специфика мотивационных возбуждений определяется специфической химической интеграцией различных физиологически активных веществ различных мозговых структур, объединенных в то или иное мотивационное состояние.

КОРКОВО-ПОДКОРКОВАЯ ИНТЕГРАЦИЯ В СТРУКТУРЕ МОТИВАЦИОННОГО ВОЗБУЖДЕНИЯ

Как указывалось выше, биологические мотивации строятся на основе восходящих активирующих влияний мотивациогенных структур гипоталамуса на кору большого мозга. В морфофункциональную архитектуру этих активирующих влияний избирательно включаются различные отделы мозга.

Избирательность активации корково-подкорковых структур наблюдается у голодных животных, находящихся под уретановым наркозом. В этих условиях наряду с активацией передних отделов коры мозга отмечается активация структур таламуса, ретикулярной формации и гипоталамуса. Таким образом, пищевое мотивационное возбуждение объединяет специфический комплекс избирательно взаимосвязанных корково-подкорковых образований с общими нейрохимическими свойствами, не блокируемый уретаном. Как указывалось выше, корково-подкорковая интеграция мотивационного состояния наряду со специфическими восходящими активирующими влияниями гипоталамических структур на другие отделы мозга, в том числе кору, включает нисходящие специфические влияния коры и других отделов мозга на инициативные центры гипоталамуса.

Так, например, в пищевом мотивационном возбуждении передние отделы коры мозга и дорсальный гиппокамп при их электрическом раздражении оказывают тормозное влияние на порог возбудимости "центра голода" латерал ьного гипоталамуса. Затылочные отделы коры мозга при их электрическом раздражении, наоборот, снижают порог возбудимости пищевой реакции при раздражении латерал ьного гипоталамуса. При оборонительной мотивации, наоборот, передние отделы коры мозга и дорсальный гиппокамп при электрическом раздражении оказывают облегчающие, а затылочные отделы - тормозные влияния.

Таким образом, каждое мотивационное состояние представляет собой специфический интегрированный комплекс избирательно объединенных корково-подкорковых образований, каждое из которых вносит свой особый вклад в формирование доминирующей мотивации.

ПЕЙСМЕКЕРНАЯ РОЛЬ ГИПОТАЛАМИЧЕСКИХ ЦЕНТРОВ В СТРУКТУРЕ ДОМИНИРУЮЩЕЙ МОТИВАЦИИ

Структуры мозга, избирательно вовлеченные в биологическое мотивационное состояние, обладают различными свойствами.

При раздражении или разрушении различных отделов коры или лимбических структур мозга биологические мотивации, как правило, приобретают измененный характер, проявляясь в ослабленной или усиленной форме. Например, при раздражении различных отделов амигдалоидного комплекса у животных может наблюдаться как афагия, так и гиперфагия. Точно такие же реакции наблюдаются при разрушениях различных отделов коры и других лимбических образований. В то же время разрушение гипоталамических центров полностью элиминирует биологические мотивации. Животное с двусторонне разрушенными латерал ьными отделами гипоталамуса может, например, лежать в окружении самой лакомой пищи и, не притронувшись к ней, погибнуть от истощения.

Таким образом, в структуре мотивационного возбуждения гипоталамическим центрам принадлежит особая, ведушая роль. Электрофизиологические исследования подтверждают это. Если кошкам, находяшимся под уретановым наркозом, после 2-суточной пищевой деприваци и разрушить, например, переднемедиальные структуры таламуса, то "голодная" активация исчезает только в соответствующих отделах коры большого мозга, но сохраняется в латерал ьных отделах гипоталамуса и в ретикулярной формации среднего мозга. В то же время двустороннее разрушение латерал ьного гипоталамуса устраняет "голодную" активацию во всех отделах мозга.

Гипоталамические центры в структуре "голодного" мотивационного возбуждения гораздо чувствительнее к химическим веществам по сравнению с корой большого мозга.

Аппликация 0,01% раствора атропина на передние отделы коры мозга у голодных кошек локально устраняет "голодную" активацию только в коре мозга. В то же время инъекция 0,0001% раствора атропина через специальную иглу непосредственно в латерал ьный гипоталамус устраняет "голодную" активацию во всех структурах мозга (А.А. Панфилов).

Механизм формирования доминирующей биологической мотивации у животных очень напоминает возникновение возбуждения в синусном узле сердечной мышцы, где располагается специальный водитель - задаватель ритма сердечных сокрашений - пейсмекер.

Аналогично процессам распространения возбуждений по сердечной мышце возбуждение, первично возникающее в мотивациогенных центрах гипоталамуса, широко генерализуется в восходящем направлении вплоть до коры большого мозга.

В синусном узле сердца возбуждение возникает ритмически. Аналогичная картина имеет место и в мотивациогенных центрах гипоталамуса. Возбуждение в них в естественных условиях также возникает периодически, по "триггерному типу" по мере нарастания той или иной потребности до критического уровня. Оно сохраняется, пока существует эта потребность, и исчезает после ее устранения.

Пейсмекер сердца имеет повышенную по сравнению с другими образованиями сердца возбудимость к специфическим гуморальным или другим раздражителям. Точно так же гипоталамические структуры по сравнению с другими структурами мозга, вовлеченными в мотивационное возбуждение, обладают повышенной возбудимостью к электрическим и химическим раздражителям.

По отношению к гипоталамическим мотивациогенным образованиям, так же как и в сердечной мышце, другие структуры мозга выстраиваются по определенному градиенту возбудимости до коры большого мозга включительно.

Синусный узел сердца, как известно, держит в определенном подчинении другие центры автоматизма, которые обладают более низкой возбудимостью. Точно так же мотивациогенные центры гипоталамуса держат в морфологической и функциональной зависимости структуры других уровней мозга, Выключение гипоталамических центров приводит к распаду всей системы объединенных в мотивационное возбуждение элементов.

Все вышеизложенное составило концепцию о пейсмекерной роли гипоталамических центров в формировании основных биологических мотиваций (П. К. Анохин, К. В. Судаков). Согласно этой концепции, гипоталамическим центрам принадлежит ведущая, пейсмекерная роль в организации всей центральной архитектоники доминирующей мотивации.

Пейсмекерная роль гипоталамических центров в формировании биологических мотиваций определяет врачебную тактику влияния на них с помощью фармакологических препаратов. Согласно этим представлениям, фармакологические вещества в первую очередь и в меньших дозах действуют на пейсмекеры мотивационных состояний, обладающие наиболее напряженным метаболизмом. Тем самым разрушается вся корково-подкорковая интеграция соответствующей мотивации.

МОЛЕКУЛЯРНАЯ ИНТЕГРАЦИЯ МОТИВАЦИОННОГО ВОЗБУЖДЕНИЯ

Установлено, что в структуре мотивационного возбуждения принимают активное участие различные олигопептиды - белковые молекулы с небольшим набором аминокислот. Показано (А. В. Котов, С. М. Толпыго), что введение в желудочки мозга голодным кроликам бета-липотропина тормозит их пищевые реакции. Этот же олигопептид активирует пищевые реакции накормленных животных. Особенно активны в формировании пищевых мотиваций животных пептиды пищеварительного тракта. Внутривенное введение накормленным животным пентагастрина вызывает у них появление выраженных пищевых мотиваций. Холецистокинин, наоборот, тормозит пищевые мотивации животных. Установлено также отчетливое влияние ангиотензина II, брадикинина и вазопрессина на реакции самораздражения и избегания у кроликов.

Участие многих олигопептидов в формировании мотиваций различного биологического качества свидетельствует о молекулярной интеграции мотивационного состояния. Каждая мотивация организует специфическое объединение белковых молекул на разных уровнях мозга.

МЕХАНИЗМЫ ТРАНСФОРМАЦИИ МОТИВАЦИИ В ЦЕЛЕНАПРАВЛЕННОЕ ПОВЕДЕНИЕ

На уровне гипоталамических мотивационных центров, как указывалось выше, происходят два ответственных физиологических процесса: 1) трансформация нейрогуморальной сигнализации о метаболической потребности в процесс избирательного возбуждения структур мозга; 2) процессы энергетической активации структур мозга как основы формирования соответствующего поведения.

Мотивационное возбуждение, возникшее первично в структурах гипоталамуса на основе его восходящих активирующих влияний, распространяется до коры большого мозга, где происходит другой, не менее ответственный процесс трансформации мотивационного возбуждения, вызванного метаболическими потребностями, в механизм целенаправленного поведения. Тем не менее всегда следует иметь в виду, что как трансформация метаболической потребности в мотивационное состояние, так и трансформация доминирующей мотивации в поведение осуществляются без потери информационной значим ости исходной потребности.

Доминирующая мотивация существенно изменяет свойства нейрон ов коры головного мозга. При этом повышается их чувствительность к различным раздражителям сенсорной и биологической модальности, увеличиваются конвергентные свойства нейрон ов, повышается их функциональная мобильность, изменяется чувствительность к нейромедиаторам и нейропептидам.

Доминирующая мотивация специфически отражается в рисунке межимпульсных интервалов у отдельных нейрон ов различных областей мозга. У голодных кроликов доминируют межимпульсные интервалы 10; 50 мс и иногда более 1000 мс, у воднодепривированных кроликов - 25 и 150 мс, у кроликов, находящихся в оборонительном состоянии, - 40 и 150 мс. После устранения доминирующей мотивации в деятельности этих нейрон ов выражен только один доминирующий интервал - 40-60 мс.

Доминирующая мотивация значительно повышает чувствительность соответствующих периферических рецептор ов. При мотивации голода, например, возрастает чувствительность вкусовых рецептор ов ротовой полости, при агрессивных мотивациях - рецептор ов вокруг ротовой полости в тригеминальной области, при половых мотивациях избирательно активируются рецептор ы половых органов. Все это расширяет взаимодействие субъектов, испытывающих ту или иную метаболическую потребность, с внешним миром и способствует более успешному удовлетворению исходных потребностей.

Указанные процессы в конечном счете определяют формирование на основе доминирующей мотивации целенаправленного поведения.

МОТИВАЦИЯ И ПАМЯТЬ

Мотивации тесно взаимодействуют с механизмами памяти. Мотивации, формирующиеся под воздействием внутренних метаболических потребностей и факторов окружаюшей среды, обладают выраженной способностью по опережающему принципу извлекать из памяти генетический и индивидуальный опыт субъектов по удовлетворению лежащей в их основе доминирующей потребности.

Восходящие активирующие влияния, сформированные различными мотивациями, распространяются в протоплазме отдельных нейрон ов мозга до механизмов синтеза специальных белковых молекул с участием генетического аппарата (см. рис.). Механизмы синтеза белковых молекул определяются предшествующими подкреплениями, т. е. удовлетворением соответствующих потребностей. Экспрессируемые под влиянием доминирующей мотиваиии белковые молекулы в свою очередь участвуют в формировании соответствующего поведения. Синтез этих белковых молекул подавляется при введении блокаторов синтеза белка и вследствие этого мотивация утрачивает способность трансформироваться в поведение. Так, блокатор синтеза белка циклогексимид на несколько десятков часов подавляет пищевую мотивацию у кроликов при электрическом раздражении центра голода латерал ьного гипоталамуса. Циклогексимид также блокирует у животных выработанную реакцию самораздражения. После введения циклогексимида сначала облегчается, а через несколько часов подавляется оборонительная реакция кроликов при электрическом раздражении центра страха вентро-медиального гипоталамуса.


Рис. Молекулярные изменения в генетическом аппарате нейрон а коры под влиянием восходящих активируюших мотивационных возбуждений. Повторное удовлетворение потребности инициирует синтез в теле нейрон а и белка.

На фоне действия циклогексимида пентагастрин, введенный в боковые желудочки мозга, восстанавливает пищевую мотивацию при раздражении латерал ьного гипоталамуса. Другой олигопептид - АКТГ4-10 - восстанавливает самораздражение. Брадикинин восстанавливает заблокированную циклогексимидом оборонительную реакцию.

Пищевую реакцию у кроликов при электрическом раздражении латерал ьного гипоталамуса блокируют также иммуноглобулины к гастрину.

Имеется множество физиологических экспериментов, которые показывают, что доминирующая мотивация извлекает у животных опыт, ранее накопленный по удовлетворению соответствующих потребностей, по опережающему принципу до конечного подкрепляющего результата включительно и, таким образом, как бы "вытягивает" весь предшествующий опыт животного по удовлетворению соответствующей потребности.

В опытах кроликов предварительно перед получением пищи обучали совершать специальные ритуальные движения - поворот на 360°. В процессе выработки пищедобывателъных навыков каждый такой поворот подкреплялся порцией пищи. В результате уже к 30-40-му сочетанию животные демонстрировали прочно выработанный пишедобывающий навык: при помещении в экспериментальную камеру они совершали повороты на 360°, которые во всех случаях подкреплялись пищей. После того как у всех животных был упрочен пищедобывательный навык предварительного поворота, каждому из них в область латерал ьного гипоталамуса вживляли биполярные электроды. Кончик электрода фиксировали в той точке латерал ьного гипоталамуса, раздражение которой у накормленных животных вызывало отчетливо выраженную реакцию дополнительного приема находящейся перед ними пищи.

Вопрос заключается в следуюшем: способно ли искусственное раздражение мотивациогенного центра голода латерал ьного гипоталамуса выявить не только пищевую реакцию приема пищи, но и то ритуальное движение на 360°, которому каждое из подопытных животных было обучено в предварительных экспериментах?

Опыты были проведены на кроликах в условиях той же экспериментальной камеры, в которой они предварительно обучались ритуальным пищедобывательным движениям.

Эксперименты показали следующее. Все животные, накормленные перед опытом, в экспериментальной клетке демонстрировали полное успокоение. Однако вслед за стимуляцией латерал ьного гипоталамуса они оживлялись и совершали ритуальное движение - поворот на 360°, после чего устремлялись к кормушке и поедали находящуюся в ней порцию пищи. Опыты свидетельствуют о том, что доминирующая пищевая мотивация, вызванная у накормленных животных искусственным раздражением латерал ьного гипоталамуса, привела к мобилизации всего того опыта, который в данной обстановке в предшествующем обучении предварял пищевое подкрепление. Это положение подтверждается опытом противоположного смысл а. У животных другой группы с выработанным аналогичным ритуальным движением производили двустороннюю коагуляцию пищевых центров латерал ьного гипоталамуса. Оказалось, что такая операция полностью элиминировала в экспериментальной камере как ритуальное движение, так и прием пиши. Опыты в этой серии с очевидностью указывают на ведущее значение доминирующей мотивации в извлечении навыка из памяти, причем извлечение опыта из памяти происходит до конечного результата включительно.

Мотивационное возбуждение выступает, таким образом, в роли ведущего фактора, формирующего предвидение животными конечного удовлетворяюшего исходную потребность результата.

Кроме извлечения опыта из памяти, доминируюшая мотивация определяет и быстроту фиксации промежуточных и конечных результатов действия по удовлетворению соответствующих потребностей.

В экспериментах Т. Н. Ониани с сотр. был проведен следуюший опыт. Голодных кошек помешали в специальную камеру, разделенную на два отсека. В первом отсеке животные не получали пищу, а должны были зафиксировать местоположение светового сигнала справа или слева, что соответствовало расположению кормушек с пищей во втором отсеке камеры. Вход во второй отсек преграждала дверь. Опыт проходил таким образом, что вслед за подачей правого или левого светового сигнала через определенный промежуток времени открывалась дверца во второй отсек и животноё получало пищу в кормушке, находяшейся на стороне сигнала. Путем тренировки у животных вырабатывали четкую линию поведения. При включении правой лампочки кошки при открывании двери во второй отсек устремлялись к правой кормушке, при зажигании левой лампочки - к левой кормушке. После этого замысел эксперимента усложнялся. Между подачей светового сигнала и открытием дверцы изменяли интервалы времени. Определялось максимальное время отсроченных реакций, при котором животные удерживали след сигнала и не совершали ошибок в выборе стороны расположения кормушки во втором отсеке. Оказалось, что в голодном состоянии при наличии выраженной пищевой мотивации время отсроченных реакций могло быть значительным. Однако оно существенно сокращалось по мере насыщения животных, удовлетворения их ведущей потребности и снижения доминирующей мотивации. Эксперимент отчетливо демонстрирует значение мотивацил для удержания следов памяти.

Итак, в системной организации целенаправленных поведенческих актов мотивации выступают как ведущий фактор фиксации опыта в памяти, способности его удержания при наличии препятствий к достижению цели и, наконец, обусловливают быстрое извлечение накопленного опыта из памяти.

С физиологической точки зрения, процессы фиксации доминирующей мотивации опыта по удовлетворению соответствующей потребности изучены недостаточно.

НАПРАВЛЯЮЩИЙ КОМПОНЕНТ ДОМИНИРУЮЩЕЙ МОТИВАЦИИ

Практически все основные биологические мотивации (пищевые, питьевые, половые, оборонительные, агрессивные etc.) генетически программируют ведущие свойства соответствующих подкрепляющих раздражителей. Только благодаря этому новорожденные животные проявляют столь поразительное избирательное отношение к биологически значим ым раздражителям окружаюшей среды. Программирование доминирующей мотивацией свойств потребных результатов совершенствуется в процессах индивидуального обучения. Опережающее программирование свойств подкрепляющих раздражителей осуществляется в аппарате акцептора результата действия. Программирование свойств потребного результата в системной организации поведенческих актов составляет направляющий компонент (вектор) доминирующей мотивации. С этим формируюшимся по опережающему принципу направляюшим компонентом доминирующей мотивации постоянно происходит сравнение параметров реально достигнутых результатов. Этот механизм в конечном счете и направляет животных к полноценному удовлетворению их ведущих потребностей и позволяет им оценивать и исправлять ошибки поведенческой деятельности.

МОТИВАЦИИ И ПОДКРЕПЛЕНИЕ

В системной организации поведения доминирующая мотивация и подкрепление тесно взаимодействуют, причем часто на одних и тех же нейрон ах мозга. Подкрепляющее возбуждение изменяет активность нейрон ов, вовлеченных в исходную мотивацию. При этом пачкообразная активность этих нейрон ов сменяется упорядоченной, регулярной (см. рис.).


Рис. Смена пачкообразной активности нейрон а, вовлеченного в доминирующую мотивацию голода (а), на регулярную после приема пищи (б).

Реакции других нейрон ов мозга, не вовлеченных в доминирующую мотивацию, на подкрепляющее возбуждение могут быть самыми разнообразными - в виде учащения или торможения исходной активности.

Электрическое раздражение мотивациогенных центров гипоталамуса приводит к тому, что отдельные клетки коры и подкорковых образований, ранее не реагировавшие на подкрепляющие воздействия, начинают на них отчетливо реагировать. Двусторонняя коагуляция или анодическая поляризация пейсмекеров мотивационного возбуждения, наоборот, приводит к тому, что клетки различных областей мозга, ранее отвечавшие на подкрепляющее воздействие, перестают на него реагировать. Следовательно, мотивационное доминирующее возбуждение как бы "настраивает" нейрон ы различных областей мозга на подкрепляющее воздействие. В то же время подкрепленке изменяет также реакции нейрон ов мозга на мотивационные воздействия.

Взаимодействие мотивационных и подкрепляющих возбуждений на отдельных нейрон ах мозга строится по комплементарному принципу. На них существенное влияние оказывают иммуномодуляторы и нейропептиды.

Доминирующее мотивационное возбуждение, формирующееся на основе той или иной потребности как организационный специфический корково-подкорковый комплекс, представляет собой функциональную канву избирательно возбужденных синаптических и нейрон альных образований мозга. На этой канве подкрепляющие этапные и завершающие возбуждения в определенной временной последовательности пишут своеобразный узор, или энграмму. Этот узор по мере неоднократных подкреплений отшлифовывается в форме специфической корково-подкорковой архитектуры, в которой синаптические и нейрон альные элементы объединены в пространственно-временных соотношениях.

При каждом очередном возникновении соответствующей потребности доминируюшее мотивационное состояние активирует элементы выработанной на основе предшествующего опыта энграммы, возбуждая их до конечного пункта, связанного с получением необходимой информации об удовлетворении соответствующей потребности. Этот комплекс избирательно возбужденных корково-подкорковых аппаратов, представляющий нейрофизиологическую архитектуру акцептора результатов действия, и направляет поведение живого существа через постоянное сравнение поступающей к нему с периферии обратной афферентации, вызванной действием раздражителей внешней среды, к достижению цели, т. е. к удовлетворению доминирующей на каждый данный момент времени потребности.

БИОЛОГИЧЕСКИЕ МОТИВАЦИИ В ФОРМИРОВАНИИ ЛИЧНОСТИ

Выраженная мотивация человека обусловливает целеустремленность личности, ее способность активно действовать для достижения целей в соответствии с юридическими, правовыми и моральными законодательствами общества.

Врожденные биологические мотивации также участвуют в формировании личности, определяя ее индивидуальные и общественные интересы, а также черты характера уже в раннем детстве.

По доминированию пищевых, агрессивных, оборонителъных, половых и других биологических мотиваций выявляются индивидуальные характеры.

Тем не менее, несмотря на важное значение биологических мотиваций, ведущее значение в формировании личности человека, его характерологических особенностей принадлежит социальным мотивациям, формирующимся под влиянием окружающей, в частности социальной, среды. Вопросы формирования личности человека широко освещаются в соответствуюшей психологической литературе.

ПАТОЛОГИЧЕСКИЕ МОТИВАЦИИ

К патологическим относятся такие искусственно создаваемые влечения, как наркомании, алкоголизм и курение. Имеются и другие патологические влечения, которые рассматриваются в курсе психи атрии.

В случае употребления алкоголя и наркотиков в гипоталамических структурах мозга на основе изменения метаболических реакций формируются искусственные пейсмекеры, создаюшие в отсутствие наркотиков активное возбуждение структур мозга, приводящее к выраженному влечению к их употреблению (см. рис.).


Рис. Динамика формирования алкогольной мотивации на основе биологической мотивации жажды. а - осмотическая потребность приводит к формированию мотивации жажды, к поиску и приему воды; б - под влиянием приема этанола изменяются свойства "центров жажды" гипоталамуса: они прекращают оказывать активирующие влияния на кору; в - осмотическая потребность формирует патологическую алкогольную мотивацию.

Расстройства мотиваций проявляются в их усилении (булимия, гиперсексуальность, полидипсия) или значительном подавлении (афагия, адипсия, импотенция). В случаях избирательного расстройства какой-либо одной, преимущественно врожденной, мотивации нередко происходит формирование психопатической личности.

Представление о формировании мотиваций по пейсмекерному принципу определяет возможность избирательно направленного воздействия на патологические их формы. Фармакологические и другие виды воздействий должны быть направлены прежде всего на метаболизм пейсмекеров, имеющих, как указывалось выше, повышенную чувствительность по сравнению с другими элементами мотивационного возбуждения. Именно путем таких направленных воздействий на самое уязвимое звено патологической мотивации можно разрушить всю систему мотивационного возбуждения, включая связанные с ней формы патологических поведенческих реакций и патологические навыки.

Мотивации представляют собой непосредственное побуждение к действию, т.е. внутреннее состояние, стимулирующее и объясняющее различные поведенческие реакции. К. В. Судаков определил мотивации, как "эмоционально окрашенные состояния животных и человека, формирующие поведение, направленное на удовлетворение лежащих в их основе биологических и социальных потребностей" (Нормальная физиология / Под ред. К. В. Судакова. – М.: Медицинское информационное агентство, 1999). В "Словаре физиологических терминов" (М.: Наука, 1987) приводится определение П. В. Симонова: "Мотивация – физиологический механизм активирования хранящихся в памяти следов (энграмм) тех внешних объектов, которые способны удовлетворить имеющуюся у организма потребность, и тех действий, которые способны привести к её удовлетворению". Можно выделить три важных функции мотивации. Во-первых, мотивация направляет поведение к определённой цели – удовлетворению потребности. Во-вторых, она повышает общий уровень бодрствования, стимулирует человека или животное к активным действиям. И, в-третьих, она согласует между собой отдельные компоненты поведения и определяет их необходимую последовательность. Мотивации формируются на основе врождённых физиологических механизмов и приобретённого жизненного опыта. Уже новорождённый способен криком или плачем показывать, что он хочет есть, и успокаивается, после того, как его накормят. Питьевой, оборонительные и терморегуляционные рефлексы тоже являются врождёнными, генетически запрограммированными и вместе с пищевыми безусловными рефлексами они позволяют новорождённому удовлетворять важнейшие биологические потребности организма – в противном случае его ожидала бы гибель. Но, если биологические потребности новорождённого помогает удовлетворять мать или другие, заботящиеся о нём люди, то взрослые должны все проблемы решать сами. Путь от младенца до взрослого – это и процесс прибавления новых разнообразных механизмов управления. Они развиваются на основе существующих нервных и эндокринных способов регуляции, гетерохронного, т.е. неодновременного созревания и совершенствования различных структур мозга, отдельных синапсов и медиаторных систем; они связаны с формированием памяти о прежнем опыте успешных или, напротив, безуспешных действий, направленных на удовлетворение потребностей. Мотивированное поведение нельзя объяснить на основе только рефлекторных механизмов ответа на лишение, например, пищи или воды, на действие чрезмерного тепла или холода. Рефлексы связаны с непосредственным действием конкретного стимула, а мотивация представляет собой комплексную форму поведения, которая одновременно зависит как от внутренних или эндогенных причин, так и от внешних обстоятельств. Кроме того, надо учитывать, что в формировании мотиваций участвуют, наряду с нервными, и эндокринные механизмы управления поведением.



Внешняя среда и организм. Любой организм одноклеточный или многоклеточный живет во внешней среде, воздушной или водной, и отделен от нее тонким покровом. Понятие «внешняя среда» означает все, что окружает организм воздух, воду, пищу, свет и многое другое. Условия внешней среды изменчивы, они зависят от времени года и суток, солнечной активности, климатических и метеорологических факторов, от взаимоотношения с другими животными и от многих других факторов. Для домашних животных среда во многом формируется благодаря деятельности человека, который создает для животного определенные условия кормления и содержания.

Внутренняя среда и гомеостаз. Итак, все, что окружает животное это внешняя среда. В середине ХIХ века знаменитый французский физиолог Клод Бернар впервые сформулировал понятие о внутренней среде организма. Суть его концепции состояла в том, что клетки тканей и органов не соприкасаются с внешней средой и находятся в особой среде, включающей в себя циркулирующие в организме жидкости кровь, тканевую жидкость и лимфу. Строго говоря, под внутр означает все, что окружает организм воздух, воду, пищу, свет и многое другое. Условия внешней среды изменчивы, они зависят от времени года и суток, солнечной активности, климатических и метеорологических факторов, от взаимоотношения с другими животными и от многих других факторов. Для домашних животных среда во многом формируется благодаря деятельности человека, который создает для животного определенные условия кормления и содержания.

Организм является открытой системой, то есть он должен получать из внешней среды все необходимое для жизни и также постоянно выделять во внешнюю среду продукты своей жизнедеятельности. Прекращение обмена с внешней средой неминуемо приводит к смерти. Поэтому одной из основных функций организма, то есть проявлением жизнедеятельности, является обмен веществ и энергии. Эта функция включает в себя два взаимопроникающих процесса ассимиляцию и диссимиляцию.

Ассимиляция это усвоение поступающих в организм веществ, синтез из них новых сложных органических веществ, свойственных данному индивидууму, образование живой массы. Одновременно запасается энергия, необходимая организму для его жизненных проявлений.

Диссимиляция это процессы разрушения живой материи и выделение освободившейся при этом энергии.

Процессы ассимиляции и диссимиляции могут быть уравновешенными, или сбалансированными, но в некоторые периоды жизни один из них может преобладать над другим. Так, в период роста организма, или во время беременности процессы ассимиляции преобладают над процессами диссимиляции, происходит накопление веществ и массы тела, а в старом организме преобладают процессы диссимиляции, распада.

С обменом веществ связаны и другие функции организма. Раздражимость (возбудимость) способность организма отвечать на различные изменения внешней среды или состояния собственных органов и тканей. Ответ на раздражение позволяет либо предупредить нежелательные воздействия, отстраниться от них, либо изменить какието свои процессы адекватно воздействиям. Если нежелательные процессы уже возникли, то благодаря регуляторным механизмам они могут быть преодолены или компенсированы.

Размножение свойство самовоспроизведения, то есть рождение потомства, сходного в основных чертах с родителями одна из основных функций организма, отличающая его от неживой природы и направленная на сохранение вида, популяции.

Рост, развитие, старение процессы постепенного становления взрослого организма, совершенствование его строения и регуляторных возможностей, а затем постепенного снижения активности всех функций, приводящее к естественной смерти.

Реализация жизненных функций организма осуществляется системами органов пищеварения, кровообращения, дыхания, выделения, движения, размножения.

Внутренняя среда и гомеостаз. Итак, все, что окружает животное это внешняя среда. В середине ХIХ века знаменитый французский физиолог Клод Бернар впервые сформулировал понятие о внутренней среде организма. Суть его концепции состояла в том, что клетки тканей и органов не соприкасаются с внешней средой и находятся в особой среде, включающей в себя циркулирующие в организме жидкости кровь, тканевую жидкость и лимфу. Строго говоря, под внутренней средой следует понимать только тканевую, или интерстициальную жидкость, так как клетки тканей соприкасаются только с ней. Но тканевая жидкость образуется из крови и оттекает от органов через кровеносные и лимфатические сосуды. Поэтому в более широком плане к внутренней среде относят все три жидкости кровь, тканевую жидкость и лимфу. В капиллярной части сосудистого русла происходит фильтрация, или выпотевание жидкой части крови плазмы через стенки сосудов. Форменные элементы крови, а также макромолекулы (белки) не могут пройти через стенки сосудов и остаются в крови. Фильтрат крови, вышедший за пределы кровеносных капилляров, называется тканевой, или интерстициальной жидкостью.

Тканевая жидкость окружает клетки тканей и является для них как бы внешней средой. Из тканевой жидкости клетки поглощают все, что им необходимо кислород, питательные и минеральные вещества, витамины, гормоны, и выделяют в нее продукты своей жизнедеятельности. Обмен веществ осуществляется между клеткой и тканевой жидкостью через клеточные мембраны.

В результате жизнедеятельности клеток состав тканевой жидкости изменяется: в ней уменьшается содержание кислорода и питательных веществ, увеличивается количество продуктов обмена и появляются новые сложные вещества, синтезированные в клетках (белки, липиды, гормоны и др.).

Отток тканевой жидкости осуществляется двумя путями. Часть тканевой жидкости всасывается обратно в кровеносные сосуды, а другая часть в лимфатические капилляры. Та тканевая жидкость, которая всасывается в лимфатические сосуды, называется лимфой. Лимфа, образующаяся из тканевой жидкости, непрерывно движется по лимфатическим сосудам и затем поступает в переднюю полую вену, где и смешивается с венозной кровью.

Клод Бернар пришел также к мысли о том, что клетки и ткани организма могут нормально существовать только в строго определенных условиях. Те изменения внешней среды, которые человек и животные переносят довольно легко, губительны для отдельно взятых клеток, тканей или органов.

Так, в нашей средней полосе России перепады летней и зимней температуры воздуха более 60 °С, но жизнь продолжается и в знойной пустыне (+60°С) градусов, и в Антарктиде (80°С). Однако клетки выдерживают температурные колебания только в пределах нескольких градусов. Температура крови, например, имеет суточные колебания около одного градуса, и только при заболеваниях может отклоняться от нормы на 45 градусов.

Другой пример. Если животное в течение 2 3 суток не получает корм, то состав его крови мало отличается от крови сытого животного, несмотря на то, что из внешней среды питательные вещества не поступают. Значит, имеются какието механизмы, сглаживающие влияния внральная регуляция (humor жидкость) осуществляется за счет биологически активных веществ, которые образуются в организме и оказывают влияние через кровь на другие ткани и органы.

Какие вещества могут участвовать в регуляции функций и являются гуморальными агентами?

1. Электролиты. Ионы натрия, калия, кальция, магния, хлора ответственны за возникновение и проведение электрических импульсов в биологических мембранах (биотоки). Растворенные в крови минеральные соли создают осмотическое давление, определяют кислотнощелочные свойства крови, от величины которых зависят многие процессы в организме.

2. Конечные и промежуточные продукты обмена веществ углекислый газ, глюкоза, мочевина и др. Так, например, углекислый газ является важнейшим стимулятором дыхательного центра, а от уровня глюкозы в крови зависит деятельность многих желез внутренней секреции и других органов.

3. Гормоны биологически активные вещества, образующиеся во многих эндокринных железах и клетках.

4. Нервные медиаторы вещества, образующиеся в нервных окончаниях и передающие возбуждение с нерва на мышцу или железу.

5. Цитомедины вещества, образующиеся в различных клетках и несущие информацию для других клеток.

Гуморальная регуляция более древний способ регуляции, она имеется у растений, одноклеточных и многоклеточных животных. У высших животных гуморальная регуляция не утратила своего значения.

В процессе эволюции в связи с усложнением строения организмов гуморальной регуляции оказалось недостаточно для быстрых изменений жизненных реакций, их корреляции и взаимодействия в условиях меняющейся окружающей среды. На определенном этапе развития появилась нервная система, которая обеспечила быструю и направленную передачу сигналов в виде нервных импульсов (биотоков) к определенным органам адресатам, в то время как гуморальная регуляция неспецифична, так как гуморальные раздражители, циркулируя в крови, оказывают воздействие на любые чувствительные к ним ткани (инсулин, например гормон поджелудочной железы участвует в 22 реакциях, а адреналин гормон надпочечников влияет почти на все функции организма).

Нервная система состоит из центрального и периферического отделов. Центральная нервная система это головной и спинной мозг, где расположены нервные клетки (нейроны), объединенные в нервные центры. Периферическая нервная система это отростки нейронов, формирующие нервы и пронизывающие все тело животного.

По функциям нервная система подразделяется на соматическую и вегетативную.

Соматическая нервная система иннервирует поперечнополосатые мышцы и обеспечивает движение животного, поэтому называется также анимальной («животной»), или двигательной нервной системой.

Вегетативная нервная система иннервирует внутренние органы и регулирует системы органов пищеварения, кровообращения, дыхания, выделения, размножения и обмен веществ. Эти функции имеются и у растений, а слово «вегетативный» означает «растительный».

Как соматическая, так и вегетативная нервная система имеют нервные центры в головном и спинном мозге, и периферические нервы, через которые осуществляется двусторонняя связь нервной системы с органами.

Основной формой деятельности нервной системы является рефлекс. Рефлекс это ответная реакция организма на раздражение из внешней или внутренней среды при участии нервной системы. Примерами могут служить отдергивание руки от горячего предмета (двигательный рефлекс) или выделение желчи из желчного пузыря (вегетативный рефлекс).

Любой рефлекс осуществляется при участии определенных морфологических структур, которые составляют рефлекторную дугу. Рефлекторная дуга это путь, по которому проходит возбуждение от места раздражения через центральную нервную систему к исполнительному органу.

Рефлекторная дуга состоит из следующих звеньев.

1. Рецепторы чувствительные нервные окончания, воспринимающие раздражения. Под воздействием раздражителя в рецепторах возникает потенциал действия (биоток).

2. Центростремительный, или афферентный нерв, по которому возбуждение (потенциал действия) передается в центральную нервную систему.

3. Нервный центр совокупность нейронов, перерабатывающих полученную от рецепторов информацию и подготавливающих команду для исполнительных органов.

4. Центробежный, или эфферентный нерв, по которому нервный импульс передается исполнительным органам.

5. Эффектор, или исполнительный орган.

Единство нервной и гуморальной регуляции

В организме высших животных и человека в результате длительной эволюции сложилась единая нейрогуморальная система регуляции функций. Деление этой системы на нервную и гуморальную условное, оно необходимо для анализа сложнейших процессов, управляющих живым организмом.

Ведущую роль в регуляторных реакциях играет нервная система и ее высший отдел кора больших полушарий головного мозга. От многочисленных рецепторов, находящихся во всех органах и тканях сюда поступает, как в главный диспетчерский центр, информация о состоянии внешней среды и внутренней среды организма, обо всех изменениях в работе органов и систем, об изменениях в составе крови и тканевой жидкости.

Однако, гуморальные агенты играют роль не только раздражителей, они могут включаться в рефлекторные дуги как самостоятельные звенья. Такое место, например, занимают гормоны. Допустим, в крови животного увеличился уровень глюкозы. Это вызывает возбуждение рецепторов сосудов (хеморецепторов), информация поступает в гипоталамус отдел промежуточного мозга, и в кору больших полушарий. После оценки ситуации из гипоталамуса возбуждение передается в островковый аппарат поджелудочной железы, где вырабатывается гормон инсулин. Инсулин выделяется в кровь, действует на клеточные мембраны и снижает содержание глюкозы в крови до обычного уровня. Таким образом, гормон включился в эфферентную часть рефлекторной дуги.

Однако единство нервной и гуморальной регуляции этим не ограничивается. Известно, что нервные клетки (нейроны) обладают двумя функциями: способностью генерировать биотоки и передавать их на другие клетки, и способностью вырабатывать биологически активные вещества.

О том, что в нервных окончаниях выделяются химические вещества медиаторы было известно еще в 20х годах XX века. Медиаторы являются химическими посредниками между эфферентными нервами и органами. Никогда нервные окончания не проникают внутрь другой клетки. Они заканчиваются на небольшом расстоянии от мембраны иннервируемой клетки. Место контакта нервного окончания с другой клеткой нервной, мышечной или секреторной называется синапсом.

Синапс состоит из трех элементов: пресинаптической мембраны (часть нервного окончания), постсинаптической мембраны (часть мембраны другой клетки) и синаптической щели (пространство между пре и постсинаптической мембранами). Передача возбуждения с нерва на орган (клетку) заключается в том, что под влиянием нервного импульса из пресинаптической мембраны выделяется медиатор, который является химическим раздражителем для постсинаптической мембраны. В результате в ней возникает возбуждение, распространяющееся по всей клетке.

Самыми распространенными медиаторами являются ацетилхолин, норадреналин, адреналин и др.

Помимо медиаторов, нейроны головного мозга вырабатывают гормоны нейропептиды. Таковы, например, гормоны гипоталамуса. Их называют релизингфакторами. Эти гормоны стимулируют или угнетают образование гормонов в передней доле гипофиза, которые, в свою очередь, регулируют деятельность других желез внутренней секреции. Некоторые гормоны гипоталамуса поступают в заднюю долю гипофиза уже в «готовом виде», а затем уже из гипофиза поступают в кровь.

Таким образом, единство нервной и гуморальной регуляции осуществляется на уровне не только нервных окончаний, но и на более высоком уровне гипоталамогипофизарной системы.

Итак, регуляция всех жизненных процессов осуществляется единой нейрогуморальной системой, в которой ведущее значение играет центральная нервная система и ее высший отдел кора больших полушарий.

На более простых уровнях организации живой материи молекулярном, внутриклеточном, тканевом большую роль играет химическая регуляция. Чем сложнее биологическая система, тем большее значение приобретает нервная регуляция, которая объединяет органы и ткани в различные системы и осуществляет функционирование организма во внешней среде как единого целого.

Основные принципы регуляции физиологических функций

При изменении состояния организма, отличающегося от нормы, или приближающегося к предельным границам гомеостаза, развивается деятельность, возвращающая организм в обычный режим. Такой механизм называется отрицательной обратной связью. Например, при колебаниях уровня глюкозы в крови выше или ниже нормы изменяется работа почек, кишечника, желез внутренней секреции, что приводит к сглаживанию этих колебаний и сохранению постоянного содержания глюкозы в крови.

По принципу отрицательной обратной связи регулируется температура тела, артериальное давление, секреция многих эндокринных желез и другие функции организма.

Наряду с отрицательной обратной связью возможна и положительная. В этом случае процесс, уже начавшийся в организме, сам себя усиливает. Так, после приема пищи начинается выделение желчи в просвет кишечника. В составе желчи имеются желчные кислоты. Они синтезируются только в печени, и больше нигде. Попав в кишечник, желчные кислоты объединяются с жирными кислотами, всасываются в кровь и освобождаются от них. Но, оказавшись в крови, желчные кислоты усиливают синтез и выделение желчи в кишечник. Таким образом, сама желчь является желчегонным средством.

Обратная связь и положительная, и отрицательная улавливают и компенсируют те отклонения, которые уже возникли в организме, или произошло рассогласование между физиологическими параметрами, свойственными данному организму и фактическими их значениями. Пользуясь терминами кибернетики науки об управлении и автоматическом регулировании систем обратная связь функционирует на выходе системы, это восстановление измененных свойств организма.

Между тем в организме имеются регуляторные механизмы, способные предотвратить какиелибо нежелательные отклонения. Но для этого следует уловить сигнал «тревоги», раздражения, превышающий допустимое значение. Что делает собака, лизнув горчицу (так отучают иногда собак брать корм из чужих рук)? Она выплевывает предмет, у нее усиливается слюноотделение, она пытается очистить рот лапой. В этом случае вкусовые рецепторы вовремя отреагировали на поступившую информацию и осуществился ряд реакций, не допустивших попадание несвойственной собаке пищи (горчицы) в желудок. Такой принцип регуляции называется регуляцией «на входе» системы, или регуляцией «по возмущению» сигнала.

Оба принципа регуляции на входе и на выходе обычно проявляются во взаимодействии и имеют либо защитный, либо компенсаторный характер.

В качестве примера рассмотрим с точки зрения управления механизмы теплорегуляции. В зимнее время, в самые лютые морозы температура крови и внутренних органов у животных остается такой же, как летом около 38 40°С. Перепад же температур с окружающим воздухом оказывается почти 100°С. Каким образом достигается температурный гомеостаз?

Вначале реагируют на низкую температуру наружного воздуха кожные рецепторы (терморецепторы) и запускают компенсаторные реакции, которые увеличивают образование тепла в организме и ограничивают рассеивание тепла в пространство. Это регуляция «по возмущению», то есть на входе системы. Если эти механизмы не удерживают температуры тела в нормальных границах, и температура крови начнет снижаться, то терморегуляция будет осуществляться по принципу отрицательной обратной связи: снижение температуры крови приведет к возбуждению терморецепторы кровеносных сосудов и это вызовет дополнительные реакции, также направленные на сохранение постоянной температуры тела (усиление обмена веществ, мышечная дрожь, ограничение теплоотдачи).

Лимбическая система мозга.

Лимбическая система мозга В 1937 году нейроанатом Джеймс Папец (Papez J.) обратил внимание на существование многочисленных связей между структурами мозга, расположенными в виде кольца в области соединения ствола и полушарий, и предложил объединить их в лимбическую систему (лат. limbus – кайма). Кольцо лимбической системы образуют мамиллярные тела, гиппокамп, миндалины и свод, проходящий дугой от гиппокампа к мамиллярным телам и перегородке. Нейроны перегородки образуют несколько пучков аксонов, соединяющих её с мамиллярными телами, миндалинами и гиппокампом – в результате образуется кольцо, по которому может циркулировать возбуждение. В лимбическую систему принято также включать соседние области древней и старой коры мозга: прилегающие к гиппокампу грушевидные доли и поясные извилины – они занимают медиальную поверхность больших полушарий непосредственно над мозолистым телом и, как пояс, огибают таламус. Лимбические структуры связаны хорошо развитыми проводящими путями с обонятельным мозгом и гипоталамусом (Рис. 13.3).

В частности гипоталамус соединён с гиппокампом и перегородкой волокнами свода, а терминальной полоской (stria terminalis) и вентральным амигдалофугальным путём – c миндалиной. Через гипоталамус лимбическая система взаимодействует со средним мозгом, через гипоталамус и передние ядра таламуса она связана с лобной корой. Гиппокамп и миндалины, расположенные в височных долях, непосредственно сообщаются с ассоциативными областями коры. Папец высказал предположение о реципрокных отношениях гипоталамуса и кортикальных центров познания и эмоций, он считал, что, получив информацию от кольца лимбических структур, гипоталамус начинает затем взаимодействовать с корой через поясную извилину и передние ядра таламуса. Эти представления существенно пересмотрел и развил американский физиолог Пол Мак-Лин (McLean P. D.), который обосновал представление о важной роли "висцерального мозга" для регуляции эмоционального поведения и коррекции внешних и внутренних сигналов. Он также предложил модель иерархического деления мозга на три отдела в соответствии с этапами его эволюционного развития (Рис. 13.4): 1) древний мозг рептилий (ствол, промежуточный мозг и базальные ганглии); 2) старый мозг млекопитающих (структуры лимбической системы) и 3) новый мозг млекопитающих (кора больших полушарий).

Функция древнего мозга рептилий, по мнению Мак-Лина, заключается в контроле врождённых поведенческих актов; такой мозг недостаточно пластичен и обеспечивает выживание только при постоянных условиях среды. Древний мозг млекопитающих ("висцеральный мозг") формирует эмоции, увеличивает объём памяти и даёт возможность возникновения простых форм поведения. Новый мозг прибавляет возможность произвольного управления эмоциями, прогнозирования поведения и т.п. Мак-Лин рекомендовал не забывать, что в каждом человеке присутствует мозг лошади и крокодила, и с этим обстоятельством порой приходится считаться. Изучение функций лимбической системы проводилось путём наблюдения за последствиями удаления или разрушения отдельных её структур (например, миндалин, гиппокампа), электрической стимуляции этих структур, регистрации их электрической активности (с помощью вживлённых электродов) при различных формах поведения. Использование методов нейрохимии и нейрофармакологии позволило обнаружить различные нейромедиаторы и рецепторы у нейронов, входящих в состав лимбической системы. Применение метода самораздражения (См. 13.5) позволило обнаружить такие структуры мозга, электрическая стимуляция которых вызывает приятные или, напротив, неприятные ощущения.

К позитивным эмоциогенным зонам относятся латеральный и перивентрикулярный гипоталамус, перегородка, покрышка среднего мозга: здесь сосредоточены тела или аксоны моноаминэргических нейронов, использующих в качестве медиаторов дофамин или норадреналин. Негативных эмоциогенных зон в мозгу гораздо меньше, чем позитивных, а многие структуры (и в том числе, по-видимому, гиппокамп) нейтральны – их стимуляция не сопровождается приятным или неприятным ощущением (в мозгу крысы около 60% структур нейтральны, раздражение 35% исследованных областей мозга вызывает удовольствие, а стимуляция остальных 5% – страдание). В мозгу человека также оказалось больше областей, раздражение которых вызывает приятные ощущения или удовольствие.

Роль мезолимбической системы в формировании мотиваций

Классическая теория мотиваций объясняла их возникновение и прекращение по следующей схеме: лишение еды или питья, температурного комфорта или полового партнёра (для такого рода ограничений часто используется термин депривация) приводит к мотивированному поведению, в результате которого существующая потребность удовлетворяется, а как только будет достигнута эта цель, мотивация просто утратит смысл. В начале 50-х годов ХХ столетия Дж. Олдс (Olds J.) выполнявший диссертацию под руководством профессора П. Милнера (Milner P.), исследовал поведение крыс со вживлёнными в мозг стимулирующими электродами. Обычно крысы, подвергнувшиеся неприятному электрическому разряду, не возвращались в то место, где на них действовал ток. Но как-то одна из подопытных крыс стала регулярно к нему возвращаться. Тогда Олдс, посчитав что у этой крысы низкий порог чувствительности, увеличил силу раздражителя, но добился только того, что крыса ещё охотнее стала возвращаться к месту электрической стимуляции. При вскрытии животного было установлено, что стимулирующий электрод оказался в заднем отделе гипоталамуса, что первоначально не планировалось в экспериментах Олдса. Тогда Олдс и Милнер вживили электроды в эту же область мозга другим крысам, а в клетке, куда их помещали, сделали педаль, при нажатии на которую замыкалась электрическая цепь, и мозг немедленно подвергался действию тока (Рис.13.5).

Это нововведение привело к открытию феномена самораздражения: крысы непрерывно нажимали на педаль (отдельные животные делали это несколько тысяч раз на протяжении одного лишь часа) и явно предпочитали такое занятие даже приёму пищи, несмотря на предшествующее голодание в течение суток. Так возникло представление о "центрах удовольствия (поощрения)". Дальнейшими исследованиями такие центры были найдены и в других областях мозга, а наряду с ними удалось обнаружить структуры, стимуляции которых животные всячески стремились избежать – эти регионы представляют собой "центры избегания (наказания)". Известный исследователь мозга Г.Мэгун (Magoun H. W.) задал в связи с этими экспериментами хороший риторический вопрос: "Не находится ли рай и ад в мозгу животного?" Вскоре этот вопрос стал уместным и применительно к мозгу человека, в котором также были найдены как центры удовольствия, так и области, раздражение которых сопровождалось неприятными ощущениями. Всё это позволило рассматривать мотивации с гедонистической точки зрения (от греч. hedone – удовольствие), согласно которой поведение мотивируется не только неприятными ощущениями, побуждающими к определённым действиям, но и получением удовольствия от результата таких действий. В процессе приобретения жизненного опыта образуются следы памяти о совпадении определённых действий с исчезновением неприятных ощущений и получением удовольствия, и эта память начинает использоваться в дальнейшем. В настоящее время известно, что переживание удовольствия связано с активацией областей мозга, которые иннервирует мезолимбическая система, образованная дофаминэргическими нейронами (Рис. 13.6).

Судя по запросам в поисковых системах, многие хотят узнать, где находятся «центры мотивации». Однако, к сожалению, таких центров на карте полушарий мозга нет: в создание и обработку побуждающих импульсов вовлечено множество участков нервной ткани, и все они параллельно занимаются другими процессами.

Как и все процессы в мозгу, мотивация - процесс комплексный. В его основе лежит действие нейромедиаторов - биологически активных химических веществ, которые осуществляют передачу электрического импульса от нейрона к нейрону и от нейронов к мышечной ткани. В случае с мотивацией нейромедиаторы оказывают на мозг пробуждающее действие, понуждая его создать желание, оценить вознаграждение, сфокусировать внимание, обратиться к навыкам или памяти и произвести другие действия, необходимые для того, что секунды спустя станет поступком.

В роли главного героя тут выступает допамин, известный многим как «гормон удовольствия». Для мозга это важное вещество: оно вырабатывается в его тканях в самых разных случаях и участвует в самых разных процессах, вызывая чувство оживления и радость получения награды, душевный подъем и улучшение настроения. Любопытно, однако, то, что когда человек находится на пути к поставленной цели, допамин выполняет свою задачу до того, как она оказывается достигнута. Он вознаграждает нас раньше, чем мы получаем искомое, делает путь приятным, подталкивает разум вперед, побуждая добиться желаемого или избежать угрозы. В результате происходит то, с чем все мы знакомы: перспектива сразиться с обстоятельствами щекочет нервы, обещание награды воодушевляет, маленькие шаги на пути к ней ободряют, и мы, помимо давления ответственности, испытываем еще и множество приятных и даже волнующих чувств.

Но откуда и куда движется допамин? Все начинается в лимбической системе - собрании различных мозговых структур, которое располагается под корой больших полушарий, в глубине черепной коробки, и отвечает за базовые паттерны поведения, благоприятные с точки зрения эволюции, участвует в формировании эмоций и выполняет другие функции. Если вы идете по темному парку, и звук шагов другого прохожего позади вызывает у вас страх и желание убежать, это лимбическая система предупреждает вас о возможной опасности. Если вы слышите плач незнакомого ребенка и не можете не обращать на него внимания, это снова она: предлагает вам защитить беспомощного детеныша. Если вы видите на витрине в кафе пончик и хотите съесть его, это тоже ее работа - совет употреблять питательную еду всегда, когда она доступна.

Лимбическая система есть даже у аллигатора. С точки зрения эволюции она считается одним из самых древних элементов мозга, и при развитии человеческого эмбриона закладывается раньше, чем кора больших полушарий (но позже, чем ствол, который соединяет головной мозг со спинным и отвечает за рефлексы). «Нападай», «убеги», «ешь», «произведи потомство», «защищай малышей», - все это сигналы лимбической системы. Она активно участвует в формировании эмоционального ответа на внешние и внутренние обстоятельства, а также эффектов, которые эмоции оказывают на тело (например, от злости учащается пульс, а от стыда кровь приливает к лицу). Некоторые ученые называют лимбическую систему допаминовой. Ведь ее работа основана на действии допамина, который дает мозгу мгновенное вознаграждение и таким образом склоняет нас к благоприятному для выживания вида поведению.

Однако человек не был бы человеком, если бы не мог похвастаться не только функциональной лимбической системой, но и прекрасно развитой корой больших полушарий, которая и отличает нас так сильно от всех остальных живых существ на планете. Кора человеческого мозга, в числе прочего, способна обрабатывать абстрактные понятия и цели, а также оценивать абстрактное вознаграждение, в том числе, в перспективе. Этот факт, судя по всему, отчасти и лежит в основе мотивационных процессов.

«Иногда то, что приносит нам удовлетворение, необходимо для выживания, - рассказывает Самюэль МакКлю, глава Лаборатории нейробиологии принятия решений Стэнфордского университета. - Но крупная предлобная кора - одна из характерных черт нашего вида, и ее способность обрабатывать абстрактные понятия и цели уникальна. Мы можем использовать эти области для того, чтобы преодолеть эффект автоматической работы лимбической системы и мотивировать себя на разные варианты поведения. Удивительно, но каждый человек может вести себя согласно абстрактным идеалам, а не так, как требует мгновенная система вознаграждений».

Сегодня нейробиологи полагают, что все стратегии поведения человека - автоматические. В их основе лежит стремление выживать, заложенное в нас, как и в представителях любого другого вида на планете, эволюционно. Импульс голода, агрессии, побега, стремление к размножению или защите потомства рождается в тканях лимбической системы и подталкивает нас к простой стратегии принятия решений. Однако мозг устроен таким образом, что для реализации «в поступок» этому импульсу нужно пройти через предлобную кору, способную создавать абстрактные цели и образ поведения на их основе. Она оценивает поступившее от лимбической системы предложение и решает, стоит ли воспользоваться им.

Диалог выглядит примерно так:

Лимбическая система: «Съешь пончик!»

Предлобная кора: «Он калорийный».

Л. с.: «Именно! Давай, ешь!»

П. к.: «Но я на диете».

Л. с.: «Он вкусный!»

П. к.: «Нет, у меня через месяц церемония вручения «Оскар». Представь, как я буду выглядеть в своем новом смокинге, если похудею!»

Л. с.: «Аппетитный пончик!»

П. к. «Стоять на красной ковровой дорожке и чувствовать себя привлекательным будет намного приятнее, чем съесть пончик и нарушить диету. Нет».

И в результате человек заказывает салат.

Исследователи считают, что процесс принятия решений на основе абстрактных целей и абстрактной выгоды для мозга труден. Он отнимает больше сил, требует больше времени. Однако мотивация продолжать действие, идущее вразрез с рекомендациями лимбической системы, тоже поддерживается короткими всплесками допамина. Они происходят, если мы достигаем промежуточной цели: например, «преодолеваем искушение» или «потеряли еще один килограмм». Эти всплески действуют как аванс и обещают великолепное чувство достижения большой абстрактной цели, Цели с большой буквы (а также колоссальный объем допамина, который сопровождает это событие). Оно не может сравниться с сиюминутным удовольствием от поедания пончика, так что мозг, по сути, обходится с человеком честно и просто предлагает ему выбрать «больше удовольствия».

«Мотивация зависит от коры, поскольку именно кора предоставляет нам цель, - рассказывает МакКлю. - Но что заставляет ее выбрать одну цель среди множества других? Это вопрос деятельности допаминовой системы вознаграждения в рамках лимбической системы, а точнее - прилежащего ядра (так называемый центр удовольствия в глубине головного мозга. - Прим. ред.). В то же время мы можем использовать предлобную кору, чтобы обдумать возможные сценарии развития событий и проиллюстрировать их примерами. Так вы формируете ожидание того, какое вознаграждение получите, и тем самым создаете цель в будущем. Так что как процесс мотивация опирается и на лимбическую систему, и на мезокортикальный путь (один из допаминовых нервных путей. - Прим. ред.). Вообразив возможный сценарий развития событий, вы задействуете этот путь, чтобы определить размеры «дивидендов», которые получите в будущем с эмоциональной точки зрения».

Но как же мозг выбирает абстрактную цель, чтобы мы могли к ней стремиться? Сегодня ответа на этот вопрос не существует, однако нейробиологи предполагают, что в основе выбора лежит оценка потенциального вознаграждения. Возможно, наш разум каждый раз оценивает свои возможности и индивидуальные пожелания, а потом выбирает самое приятное, а может, и самое труднодостижимое: ведь чем больше маленьких шагов придется сделать на пути к цели, тем больше допамина получит мозг. И даже более того: чем больше работы будет вложено в реализацию поставленной задачи, тем сильнее будет эмоциональный, и, вероятно, и допаминовый отклик в финале.

Опирается ли этот процесс на «эволюционные» стремления: быть сытым, найти подходящего партнера, победить врага? Вероятно, да. Стив Джобс советовал «оставаться голодным», Зигмунд Фрейд утверждал, что творчество - это сублимация либидо, различные монашеские ордены рекомендовали аскезу для поддержания духовного огня, в среде средневекового рыцарства были приняты ограничительные обеты, которые не снимались, пока герой не добивался поставленной задачи. В культуре можно найти бесчисленное количество примеров, когда самоограничение использовалось для достижения абстрактных целей. Очевидно, в основе этой интуитивной стратегии лежит интуитивное использование порожденного лимбической системой желания в качестве «топлива». Возможно, его наличие позволяет запустить допаминовую «механику», и, в результате, мотивирует нас двигаться вперед.

Психофизиология мотивации.

Термин "мотивация" буквально означает "то, что вызывает движение", т.е. в широком смысле мотивацию можно рассматривать как фактор (механизм), детерминирующий поведение.

Мотива́ция (от лат. movere ) - побуждение к действию; динамический процесс психофизиологического плана, управляющий поведением человека, определяющий его направленность, организованность, активность и устойчивость; способность человека деятельно удовлетворять свои потребности.

В любой мотивации необходимо различать две составляющие: энергетическую и направляющую. Первая отражает меру напряжения потребности, вторая - специфику или семантическое содержание потребности. Мотивационное возбуждение можно рассматривать как особое, интегрированное состояние мозга, при котором на основе влияния подкорковых структур осуществляется вовлечение в деятельность коры больших полушарий. В результате человек начинает целенаправленно искать пути и объекты удовлетворения соответствующей потребности.

Эффективным методом исследования нейрофизиологических механизмов различных мотиваций является метод самостимуляции, предложенный американским ученым Дж. Олдсом (1953).Крысе в различные участки головного мозга вживляют специальные металлические электроды. Если при случайном нажатии на рычаг животное произведет электрическую стимуляцию собственного мозга через вживленные в различные его участки электроды, то в зависимости от локализации приложения тока наблюдается различный характер поведения. При нахождении электродов в одних структурах мозга животное стремится к повторному раздражению, в других - избегает его, а в третьих - остается безразличным. Пункты мозга, связанные с избеганием стимуляции (отрицательные зоны), находились преимущественно в дорсальной части среднего мозга и латеральной части заднего гипоталамуса. В мозге крысы пункты положительной самостимуляции составляют примерно 35%, отрицательные - 5% и нейтральные - 60%. Обширная система положительного подкрепления включает ряд подсистем, соответствующих основным видам мотиваций - пищевой, половой и др. У отдельных животных голод увеличивает, а насыщение снижает частоту самостимуляции через электроды в гипоталамусе. У самцов после кастрации уменьшается частота самостимуляции определенных точек мозга. Введение тестостерона восстанавливает исходную чувствительность к току. В тех пунктах мозга, где голод повышает частоту самостимуляции, введенные андрогены снижали ее, и наоборот.

Виды мотивации.

В любой мотивации необходимо различать две составляющие: энергетическую и направляющую . Первая отражает меру напряжения потребности, вторая - специфику или семантическое содержание потребности. Таким образом, мотивации различаются по силе и по содержанию. В первом случае они варьируют в диапазоне от слабой до сильной. Во втором - прямо связаны с потребностью, на удовлетворение которой направлены. Соответственно так же, как и потребности, мотивации принято разделять на низшие (первичные, простые, биологические) и высшие (вторичные, сложные, социальные). Примерами биологических мотиваций могут служить голод, жажда, страх, агрессия, половое влечение, забота о потомстве. Биологические и социальные мотивации определяют подавляющее большинство форм целенаправленной деятельности живых существ.

Доминирующее мотивационное возбуждение. В силу многообразия разные потребности нередко сосуществуют одновременно, побуждая индивида к различным, иногда взаимоисключающим стилям поведения. Например, могут остро конкурировать потребность безопасности (страх) и потребность защитить свое дитя (материнский инстинкт). Именно поэтому нередко происходит своеобразная "борьба" мотиваций и выстраивание их иерархии. В формировании мотиваций и их иерархической смене ведущую роль играет принцип доминанты, сформулированный А.А. Ухтомским (1925). По этому принципу, в каждый момент времени доминирует та мотивация, в основе которой лежит наиболее важная биологическая потребность. Сила потребности, т.е. величина отклонения физиологических констант или концентрации соответствующих гормональных факторов, получает свое отражение в величине мотивационного возбуждения структур лимбической системы и определяет его доминантный характер. Консервативный характер доминанты проявляется в ее инертности, устойчивости и длительности. В этом заключается ее большой биологический смысл для организма, который стремится к удовлетворению этой биологической потребности в случайной и постоянно меняющейся внешней среде. В физиологическом смысле такое состояние доминанты характеризуется определенным уровнем возбудимости центральных структур, обеспечивающей их высокую отзывчивость и "впечатлительность" к разнообразным воздействиям. Доминирующее мотивационное возбуждение, побуждающее к определенному целенаправленному поведению, сохраняется до тех пор, пока не будет удовлетворена вызвавшая его потребность. При этом все посторонние раздражители только усиливают мотивацию, а одновременно с этим все другие виды деятельности подавляются. Однако в экстремальных ситуациях доминирующая мотивация обладает способностью трансформировать свою направленность, а следовательно, и реорганизовывать целостный поведенческий акт, благодаря чему организм оказывается способным достигать новых, неадекватных исходной потребности результатов целенаправленной деятельности. Например, доминанта, созданная страхом, в исключительных случаях может превратиться в свою противоположность - доминанту ярости.

Нейронные механизмы мотивации. Возбуждение мотивационных подкорковых центров осуществляется по механизму триггера: возникая, оно как бы накапливается до критического уровня, когда нервные клетки начинают посылать определенные разряды и сохраняют такую активность до удовлетворения потребности. Мотивационное возбуждение усиливает работу нейронов, степень разброса их активности, что проявляется в нерегулярном характере импульсной активности нейронов разных уровней мозга. Удовлетворение потребности, напротив, уменьшает степень разброса в активности нейронов, переводя нерегулярную активность нейронов различных уровней мозга - в регулярную. Доминирующая мотивация отражается в характерном распределении межстимульных интервалов у нейронов различных отделов мозга. При этом распределение межстимульных интервалов для различных биологических мотиваций (например, жажда, голод и т.п.) носит специфический характер. Однако практически в любой области мозга можно найти значительное число нейронов со специфическим для каждой мотивации распределением межстимульных интервалов. Последнее, по мнению К.В. Судакова, позволяет говорить о голографическом принципе отражения доминирующей мотивации в деятельности отдельных структур и элементов мозга.

Физиологические теории мотиваций. Первые представления о физиологической природе мотиваций были основаны на интерпретации сигналов, поступающих от периферических органов. При этом считалось, что мотивации возникают в результате стремления организма избежать неприятных ощущений, сопровождающих различные побуждения. Например, животное утоляет жажду, чтобы избавиться от сухости в полости рта и глотки, поедает пищу, чтобы избавиться от мышечных сокращений пустого желудка и т.д. Были выдвинуты теории, в которых основное внимание уделялось гуморальным факторам мотиваций. Так, голод связывался с возникновением так называемой "голодной крови", т.е. крови с существенным отклонением от обычной разницы в концентрации глюкозы. Предполагалось, что недостаток глюкозы в крови приводит к "голодным" сокращениям желудка. Мотивация жажды также оценивалась как следствие изменения осмотического давления плазмы крови или снижения внеклеточной воды в тканях. Половое влечение ставилось в прямую зависимость от уровня половых гормонов в крови. Действительно, в глубоких структурах мозга, как уже отмечалось, существуют хеморецепторы, специализированные на восприятии колебаний в содержании определенных химических веществ в крови. Основным центром, содержащим такие рецепторы, является гипоталамус . На этой основе была выдвинута гипоталамическая теория мотиваций, в соответствии с которой гипоталамус выполняет роль центра мотивационных состояний. Экспериментальным путем, например, было установлено, что в латеральном гипоталамусе располагается центр голода, побуждающий организм к поискам и приему пищи, а вмедиальном гипоталамусе - центр насыщения, ограничивающий прием пищи. Двухстороннее разрушение латеральных ядер у подопытных животных приводит к отказу от пищи, а их стимуляция через вживленные электроды - к усиленному потреблению пищи. Разрушение некоторых участков медиального таламуса влечет за собой ожирение и повышенное потребление пищи. Однако гипоталамические структуры не могут рассматриваться в качестве единственных центров, регулирующих мотивационное возбуждение. Первая инстанция, куда адресуется возбуждение любого мотивационного центра гипоталамуса, - лимбическая система мозга. При усилении гипоталамического возбуждения оно начинает широко распространяться, охватывая кору больших полушарий и ретикулярную формацию. Последняя оказывает на кору головного мозга генерализованное активирующее влияние. Фронтальная кора выполняет функции построения программ поведения, направленных на удовлетворение потребностей. Именно эти влияния и составляют энергетическую основу формирования целенаправленного поведения для удовлетворения насущных потребностей.

Теория функциональных систем и мотивация. Наиболее полное психофизиологические описание поведения дает теория функциональных систем П.К. Анохина (см. тему 1 п. 1.4 ). Согласно теории ФС, немотивированного поведения не существует. Мотивация активизирует работу ФС, в первую очередь афферентный синтез и акцептор результатов действия. Соответственно активируются афферентные системы (снижаются сенсорные пороги, усиливаютсяориентировочные реакции ) и активизируется память (актуализируются необходимые для поисковой активности образы-энграммы памяти). Мотивация создает особое состояние ФС - "предпусковую интеграцию", которая обеспечивает готовность организма к выполнению соответствующей деятельности. Для этого состояния характерен целый ряд изменений. Во-первых , активируется двигательная система (хотя разные формы мотивации реализуются в разных вариантах поведенческих реакций, при любых видах мотивационного напряжения возрастает уровень двигательной активности). Во-вторых , повышается тонус симпатической нервной системы, усиливаются вегетативные реакции (возрастает ЧСС, артериальное давление, сосудистые реакции, меняется проводимость кожи). В результате возрастает собственно поисковая активность, имеющая целенаправленный характер. Кроме того , возникают субъективные эмоциональные переживания (эти переживания имеют преимущественно негативный оттенок, во всяком случае до тех пор, пока не будет удовлетворена соответствующая потребность). Все перечисленное создает условия для оптимального выполнения предстоящего поведенческого акта. Мотивация сохраняется на протяжении всего поведенческого акта, определяя не только начальную стадию поведения (афферентный синтез), но и все последующие: предвидение будущих результатов, принятие решения, его коррекцию на основе акцептора результатов действия и изменившейся обстановочной афферентации . Именно доминирующая мотивация "вытягивает" в аппарате акцептора результатов действия весь накопленный и врожденный поведенческий опыт, создавая тем самым определенную программу поведения. С этой точки зрения акцептор результата действия представляет доминирующую потребность организма, преобразованную мотивацией в форму опережающего возбуждения мозга. Таким образом, мотивация оказывается существенным компонентом функциональной системы поведения. Она представляет собой особое состояние организма, которое, сохраняясь на протяжении всего времени - от начала поведенческого акта до получении полезных результатов, - определяет целенаправленную поведенческую деятельность организма и характер его реагирования на внешние раздражители.

Теория редукции драйва, предложенная К. Халлом (Hull, 1943), еще в середине ХХ в., утверждала, что динамика поведения при наличии мотивационного состояния (драйва) непосредственно обусловлена стремлением к минимальному уровню активации, которое обеспечивает организму снятие напряжения и ощущение покоя. Согласно этой теории, организм стремится уменьшить избыточное напряжение, вызванное мотивационным драйвом. Однако, как показали дальнейшие исследования, стремление к редукции драйва - не единственный фактор, детерминирующий поведение. Редукция драйва не может объяснить все виды поведения, направленные на поиск новой дополнительной стимуляции. По-видимому, во всех жизненных ситуациях организм стремится не к покою, а к некоторому оптимальному уровню активации, который позволяет ему функционировать наиболее эффективным образом. В тех случаях, когда напряжение слишком сильно, это будет поведение, направленное на снятие избыточного напряжения, в других, когда уровень активации очень низок, поведение будет направлено на поиск дополнительной стимуляции, обеспечивающей потребный уровень активации. Субъективное ощущение человека при оптимальном уровне активации, видимо, более всего соответствует состоянию "оперативного покоя" (см. тему 3 п. 3.1 ).

Индивидуальные различия в уровне активации. Вышесказанное хорошо согласуется с представлениями Г. Айзенка (Eysensk, 1985), согласно которым индивидуальные различия по такой черте личности, как экстраверсия - интроверсия, зависят от особенностей функционирования восходящей ретикулярной активирующей системы (см. также тему 3 п. 3.1 ). Эта структура контролирует уровень активации коры больших полушарий.

    Предполагается, что:

    • умеренная степень кортикальной активации переживается как состояние удовольствия, в то время как очень высокий или очень низкий уровни ее переживаются как неприятное состояние;

      ретикулярная формация у интровертов и экстравертов обеспечивает разные уровни активации кортикальных структур, причем у интровертов уровень активации существенно выше, чем у экстравертов.

Айзенк утверждает, что в тишине (например, при работе в библиотеке) экстраверты, у которых в норме структуры коры не слишком высоко активированы, могут испытывать неприятные ощущения, поскольку их уровень кортикальной активации оказывается значительно ниже той точки, при возбуждении которой переживается чувство психического комфорта. Поэтому у них возникает потребность что-то сделать (разговаривать с другими, слушать музыку в наушниках, делать перерывы). Поскольку интроверты, напротив, высоко активированы, любое дальнейшее увеличение уровня активации для них неприятно. Другими словами, экстраверты нуждаются в постоянном средовом "шуме", чтобы довести уровень возбуждения коры до состояния, приносящего удовлетворение. В то же время интроверты такой потребности не испытывают, и действительно будут считать такую стимуляцию сверхвозбуждающей и потому неприятной. Эмпирические данные показывают, что у интровертов большая активированность, чем экстравертов констатируется в 22 из 38 исследований, тем самым теория Айзенка, скорее, подтверждается. Таким образом, теория Айзенка свидетельствует в пользу того, что поведение выступает как инструмент, модулирующий уровень активации, увеличивая или уменьшая последний, в зависимости от нужд человека.

Наши многолетние экспериментальные исследования показали, что биологические мотивации, такие, как голод, жажда, страх и др., строятся доминирующими мотивациями на основе восходящих активирующих влияний специальных мотивациогенных центров гипоталамуса на другие отделы головного мозга, включая кору больших полушарий. Эти гипоталамические центры выступают в роли своеобразных пейсмекеров биологических мотиваций, определяющих ритмы их проявлений. Активирующие влияния мотивациогенных центров гипоталамуса отчетливо проявляются уживотных в изменениях электрической активности корыи других структур головного мозга, особенно под уретановым наркозом, блокирующимактивное бодрствование. В более сложных формах целенаправленной деятельности животных и человека, как показали А.Н.Леонтьев и Ю.В.Урываев, мотивациогенные пейсмекеры располагаются во фронтальных отделах корыголовного мозга. Мотивациогенные пейсмекерные центры держат связанные с ними структуры головного мозга в функциональной зависимости от их метаболических состояний. На основе активирующих мотивационных влияний изменяются свойства нейронов головного мозга: их конвергентные свойства по отношению к раздражителям сенсорной и биологической модальности, дискриминационные свойства, а также чувствительность к нейромедиаторам и олигопептидам. При этом усиливается экспрессия ранних генов: c-Fos и c-Jun .Особенно важно отметить возрастание чувствительности нейронов разных отделов головного мозга к подкрепляющим воздействиям. Доминирующая мотивация, как показали исследования, отчетливо проявляется в деятельности отдельных нейронов головного мозга, находящихся на разных уровнях центральной нервной системы, в виде специфического для каждой мотивации пачечного паттерна межимпульсных интервалов. Так, в частности, при голодной мотивации у кроликов доминирует распределение межимпульсных интервалов 10 и 150 мс, при водной депривации - 25 и 150 мс, при оборонительной мотивации - 40 и 150 мс. Процент нейронов с доминирующим распределением межимпульсных интервалов различен в разных структурах головного мозга. Он убывает от стволовых структур головного мозга до коры больших полушарий. Наряду с восходящими активирующими влияниями нейроны коры головного мозга оказывают специфические нисходящие активирующие и тормозные влияния на инициативные мотивациогенные центры гипоталамуса. Между корой головного мозга и подкорковыми мотивациогенными центрами устанавливаются динамические реверберирующие процессы, раскрытые в научных исследованиях А.И.Шумилиной, М.Баича и Б.Лажетича. При доминирующей мотивации, например при отсутствии ранее многократно применяемого оборонительного

условного раздражителя у кроликов, наблюдается выраженная высокоамплитудная упорядоченная электрическая активность, генерализованная по структурам коры и подкорковых образований, сопровождающаяся в нейронах этих же структур головного мозга пачечной активностью. Объединение корково-подкорковых структур в

доминирующие мотивации осуществляется на основе специфической интеграции медиаторных и олигопептидных механизмов. Корково-подкорковая реверберация возбуждений и их специфическая химическая интеграция определяют, как мы полагаем, энергетическую силу доминирующих мотиваций. К тому же, доминирующая мотивация повышает чувствительность соответствующих периферических рецепторов к

подкрепляющим воздействиям. Доминирующая мотивация, избирательно активируя структуры головного мозга, создает нейрофизиологическую основу, определяющую активную поисковую деятельность субъектами предметов окружающего их мира, удовлетворяющих формируемую доминирующей мотивацией потребность.В системной архитектонике поведенческих актов доминирующие мотивации тесно взаимодействуют с

подкрепляющими возбуждениями, поступающими в мозг от параметров достигаемых субъектами поведенческих результатов, удовлетворяющих их исходные потребности.

Подкреплению в формировании функциональных систем принадлежит системообразующая роль.Как только мотивированный потребностью субъект достигает результата, удовлетворяющего его исходную потребность, параметры этого результата «отпечатываются» на соответствующих структурах акцептора результатов действия данной функциональной системы и при последующих возникновениях аналогичной потребности опережающе активируются доминирующей мотивацией. Подкрепление снижает восходящие активирующие влияния пейсмекерных мотивациогенных центров на кору больших полушарий головногомозга. В специальных наших экспериментах показано, что подкрепляющие возбуждения адресуются как раз к тем нейронам акцепторов результатов действия функциональных систем, которые исходно вовлекаются в доминирующую мотивацию и в своей пачечной разрядной деятельности отражают специфический, присущий данной мотивации характер распределения межимпульсных интервалов. Подкрепление - прием пищи, воды, избегание опасности - отчетливо изменяет пачечную активность нейронов, вовлеченных в мотивационное состояние. При этом пачкообразная активность нейронов во всех структурах мозга сменяется на регулярную с доминированием только одного межимпульсного интервала. Применение позитронно-эмиссионной томографии позволяет видеть, как системно меняется кровообращение и интенсивность метаболизма в различных структурах головного мозга при наличии мотивации и удовлетворении лежащей в ее основе потребности.Эксперименты D.Denton с сотрудниками показали, что состояние жажды отчетливо проявляется в активности поясной извилины головного мозга у человека. После введения воды в ротовую полость и при полном питьевом удовлетворении жажды крове-

наполнение и интенсивность метаболизма в этих структурах головного мозга отчетливо снижаются. Тесное взаимодействие доминирующей мотивации с подкреплением на нейронах головного мозга позволило нам сформулировать представления о голографическом принципе построения доминирующих мотиваций. Сигнализация о потребности рассматривается нами как опорная волна, а сигнализация об

удовлетворении потребности - как предметная волна. При этом структуры головного мозга выступают в качестве голографического экрана, на котором осуществляется интерференция опорной и предметных волн. В качестве голографического экрана в каждой функциональной системе выступает акцептор результата действия. В каждой функциональной системе он представляет широко разветвленную по различным структурам коры и подкорковых образований мозаичную архитектонику. В соответствии с гипотезой, предложенной П.К.Анохиным, структурную основу акцепторов результатов действия в функциональных системах, определяющих различные поведенческие акты человека и животных, составляют вставочные нейроны различных отделов мозга, на которые по коллатералям пирамидного тракта распространяются копии эффекторных возбуждений пирамидных нейронов коры больших полушарий. Благодаря наличию между вставочными нейронами, объединенными в аппарат акцептора результата действия, циклических взаимосвязей возбуждения в этих нейронах на основе механизмов реверберации способны сохраняться длительное время. Это,в свою очередь, позволяет им длительно находиться в возбужденном состоянии и благодаря этому под влияниями доминирующей мотивации непрерывно оценивать поступающую в головной мозг обратную афферентацию от различных параметров достигаемых субъектами результатов.

Подтверждение распространения возбуждений пирамидного тракта на вставочные нейроны получено в специальных экспериментах, в которых микроэлектродным методом исследовали реакции вставочных нейронов различных областей головного мозга в ответ на антидромное раздражение центрального конца перерезанного на уровне олив продолговатого мозга пирамидного тракта.

При антидромной стимуляции пирамидного тракта ответы нейронов зарегистрированы в сомато-сенсорной, зрительной коре и в дорсальном гиппокампе. Эти же нейроны отчетливо реагировали на предъявляемые животным стимулы различной сенсорной и

биологической модальности, а также на раздражения мотивациогенных центров гипоталамуса. Все это дает основание полагать, что на вставочных нейронах мозга, составляющих аппарат акцептора результатов действия, активированных доминирующей мотивацией, оценивается и «отпечатывается» сенсорная информация, поступающая к ним от различных рецепторов организма при действии на них разнообразных параметров подкрепляющихфакторов. Именно в этих нейронах, отвечающих на антидромное

раздражение пирамидного тракта, проявляется пачкообразная импульсная активность, характерная для мотивационного состояния, которая может отражать циркуляцию возбуждений в образуемых этими нейронами «нейронных ловушках», описанных Лоренто де Но. Акцептор результатов действия под влиянием инициативной, тонизирующей силы восходящих активирующих влияний на кору головного мозга мотивациогенных центров направляет субъектов на активный поиск потребного вещества. Его роль заключается, прежде всего, в том, что он определяет целенаправленное поведение субъектов по своеобразной «модели», постоянно сравнивая с ней результаты совершенных действий.

Именно акцептор результатов действия в системной организации поведенческих и психических актов человека и животных выступает в качестве своеобразного вектора поведения. Динамика деятельности функциональных систем всегда определяется установленными нами дискретными системоквантами: от потребности к ее удовлетворению . Каждый системоквант поведенческой и психической деятельности, формирующейся на основе той или иной потребности, включает доминирующую мотивацию, поведение, направленное на исследование и взаимодействие организма с факторами внешней среды, в различной степени удовлетворяющими эту потребность, и постоянную оценку параметров достигнутых результатов акцептором результатов действия с помощью обратной афферентации. В акцепторах результатов действия функциональных систем опережающе программируются:

1) свойства параметров потребных результатов, 2) средства и способы достижения результатов, 3) эмоциональные состояния предвидения результата и сопровождающие разные этапы удовлетворения исходных потребностей.

Опережающему отражению действительности предшествует запечатление на структурах акцепторов результатов действия параметров результатов, удовлетворяющих или, наоборот, не удовлетворяющих исходные потребности организма. Свойство запечатления (импринтинг) особенно четко выражено у новорожденных животных, но оно, как мы полагаем, сохраняется всю последующую жизнь индивидов и проявляется в формировании при обучении динамических стереотипов головного мозга («отпечатков действительности» по И.П.Павлову) в случаях, когда параметры потребных результатов сохраняются в неизменном виде на длительных отрезках жизнедеятельности.

Обратная афферентация от различных параметров результатов поведения поступает к адекватным для нее структурам акцепторов результатов действия: зрительная - к нейронам зрительных структур головного мозга, обонятельная - к нейронам обонятельных, вкусовая - вкусовых и т.д. В результате создается структурно

функциональный ансамбль подкрепления - его информационный образ.

Каждый параметр подкрепляющего воздействия оставляет свой специфический информационный след в соответствующей зрительной, вкусовой, слуховой, тактильной и т.п. проекционной зоне головного мозга, определяя тем самым генерализованную по

Мотивации представляют собой непосредственное побуждение к действию, т.е. внутреннее состояние, стимулирующее и объясняющее различные поведенческие реакции. К. В. Судаков определил мотивации, как "эмоционально окрашенные состояния животных и человека, формирующие поведение, направленное на удовлетворение лежащих в их основе биологических и социальных потребностей" (Нормальная физиология / Под ред. К. В. Судакова. – М.: Медицинское информационное агентство, 1999). В "Словаре физиологических терминов" (М.: Наука, 1987) приводится определение П. В. Симонова: "Мотивация – физиологический механизм активирования хранящихся в памяти следов (энграмм) тех внешних объектов, которые способны удовлетворить имеющуюся у организма потребность, и тех действий, которые способны привести к её удовлетворению".

Можно выделить три важных функции мотивации. Во-первых, мотивация направляет поведение к определённой цели – удовлетворению потребности. Во-вторых, она повышает общий уровень бодрствования, стимулирует человека или животное к активным действиям. И, в-третьих, она согласует между собой отдельные компоненты поведения и определяет их необходимую последовательность.

Мотивации формируются на основе врождённых физиологических механизмов и приобретённого жизненного опыта. Уже новорождённый способен криком или плачем показывать, что он хочет есть, и успокаивается, после того, как его накормят. Питьевой, оборонительные и терморегуляционные рефлексы тоже являются врождёнными, генетически запрограммированными и вместе с пищевыми безусловными рефлексами они позволяют новорождённому удовлетворять важнейшие биологические потребности организма – в противном случае его ожидала бы гибель. Но, если биологические потребности новорождённого помогает удовлетворять мать или другие, заботящиеся о нём люди, то взрослые должны все проблемы решать сами. Путь от младенца до взрослого – это и процесс прибавления новых разнообразных механизмов управления. Они развиваются на основе существующих нервных и эндокринных способов регуляции, гетерохронного, т.е. неодновременного созревания и совершенствования различных структур мозга, отдельных синапсов и медиаторных систем; они связаны с формированием памяти о прежнем опыте успешных или, напротив, безуспешных действий, направленных на удовлетворение потребностей.

Мотивированное поведение нельзя объяснить на основе только рефлекторных механизмов ответа на лишение, например, пищи или воды, на действие чрезмерного тепла или холода. Рефлексы связаны с непосредственным действием конкретного стимула, а мотивация представляет собой комплексную форму поведения, которая одновременно зависит как от внутренних или эндогенных причин, так и от внешних обстоятельств. Кроме того, надо учитывать, что в формировании мотиваций участвуют, наряду с нервными, и эндокринные механизмы управления поведением.

13.2. Кибернетические принципы гомеостатического регулирования

Биологические потребности связаны с сохранением важнейших гомеостатических параметров: если они по какой-либо причине отклонятся от заданного значения, то автоматически срабатывают нервные и эндокринные механизмы регуляции и одновременно изменяется поведение: оно мотивируется на такие действия, которые помогают быстрее восстановить гомеостаз. Регулирование гомеостатических параметров (например, парциального давления кислорода в артериальной крови, осмотического давления крови, уровня сахара в крови, величины артериального давления и т.д.) можно рассмотреть с позиций теории управления – одного из разделов кибернетики, которая изучает информационные процессы в сложных системах. Системой в кибернетике называется совокупность взаимодействующих между собой относительно элементарных структур или процессов, объединённых в целое для выполнения общей функции. Например, в биологических системах, управление необходимо для поддержания оптимального значения того или иного гомеостатического параметра. Если повлияют внешние силы и изменят величину такого параметра, то входящие в систему звенья перестраиваются так, чтобы вернуть ему оптимальное значение (Рис. 13.1).

Если, например, заданное значение средней температуры тела близко к 37°, а внешняя температура (запускающий стимул) начинает повышаться (+) или понижаться (-), то соответствующая информация от наружных терморецепторов заставляет центры температурной регуляции (управляющее устройство) воздействовать на механизмы нервной и эндокринной регуляции, а также на поведение так, чтобы они и в этих условиях помогли сохранить имеющуюся температуру. Если же это не удаётся, то температура тела начнёт увеличиваться или уменьшаться, т. е. заданное значение параметра изменится. Величину отклонения от заданного значения определят внутренние терморецепторы (измерение величины параметра) и оповестят об этом (обратная связь) центры температурной регуляции. После этого активность центров меняется так, чтобы выровнять регулируемый параметр по заданному эталону. По такой же схеме кроме температуры тела регулируются и многие другие гомеостатические параметры, отклонение которых от заданного значения автоматически запускает внутренние механизмы регуляции (1) и в то же время специфически изменяет характер поведения (2).

13.3. Гипоталамус – важнейшая мотивационная структура мозга

В кибернетическом понимании гипоталамус является управляющим устройством, к которому поступает вся необходимая информация о сохранении гомеостатических параметров или их отклонении от заданного значения. На языке физиологических терминов это означает получение афферентных сенсорных сигналов от периферических рецепторов, а также способность центральных рецепторов самих гипоталамических нейронов непосредственно воспринимать изменения состава крови и ликвора.

Эти два источника поступающей в гипоталамус информации стали основой двух физиологических теорий мотиваций: периферической и центральной. В основу периферической теории легли исследования, показывавшие закономерную связь между мотивированным поведением и характером импульсации от определённых периферических рецепторов: сухость во рту, например, связывалась с формированием жажды, а периодические сокращения пустого желудка – с возникновением голода. В середине ХХ века ведущую роль в формировании мотиваций начали отдавать гипоталамическим центрам, которые в то время открывали один за другим. Позже оба подхода естественным путём объединились, поскольку информация от периферических рецепторов попадает, как известно, в гипоталамические центры и специфически изменяет их активность.

В середине 50-х годов ХХ века существовала точка зрения, что роль гипоталамуса в формировании мотиваций сводится лишь к общему сенсорному и моторному возбуждению, но вскоре стали находить специфические мотивационные механизмы голода и насыщения, питьевого и температурного поведения и т.д. Эти находки были получены во время наблюдений за последствиями электрической стимуляции отдельных регионов или ядер гипоталамуса, а также за изменениями поведения экспериментальных животных после электролитического разрушения тех или иных областей с помощью введённых в гипоталамус электродов.

В гипоталамусе имеется обильная сеть кровеносных капилляров, ни одна другая область мозга так густо ими не насыщена. Через стенки этих капилляров способны проходить такие растворённые в крови вещества, которые в других областях мозга никогда не попадут в его ткань из крови (или наоборот) в связи с особенностями строения стенок сосудов и расположением клеток глии, формирующими гематоэнцефалический барьер: в области гипоталамуса этот барьер снижен. Нейроны гипоталамуса имеют специфические рецепторы для связывания некоторых компонентов крови. Так, например, у одних клеток гипоталамуса существуют глюкорецепторы, взаимодействующие с молекулами глюкозы, а у других – рецепторы, связывающие тот или иной гормон.

Академик К. В. Судаков на основе многолетнего опыта исследования механизмов биологических мотиваций сформулировал представление о том, что различные группы гипоталамических нейронов используют для своих обменных процессов только определённые гуморальные факторы, т.е. обладают химической избирательностью. Если их внутренняя потребность в таком веществе не удовлетворяется, они приходят в состоянии возбуждения. Различные группы однородных в своей химической избирательности нейронов образуют разные мотивационные центры гипоталамуса. Специализация нейронов может состоять и в том, что одни из них активируются снижением уровня глюкозы в крови, а другие – повышением, есть нейроны, чувствительные к величине осмотического давления, уровня норадреналина в крови и т.д.

Возбуждение нейронов мотивационных центров происходит постепенно: по мере нарастания метаболической потребности достигается критический уровень их деполяризации и, вследствие этого, нейроны начинают ритмически генерировать потенциалы действия до тех пор, пока потребность не будет удовлетворена (Рис. 13.2).

Это триггерный механизм деятельности, которая происходит периодично: нейроны ритмически разряжаются при возникновении потребности и успокаиваются, когда потребность будет удовлетворена.

Мотивационные центры гипоталамуса взаимодействуют с ретикулярной формацией, активность которой повышает общий уровень бодрствования и этим способствует эффективности действий, направленных на удовлетворение потребности. Гипоталамус имеет двусторонние связи со структурами лимбической системы мозга – именно этим определяется эмоциональная окраска мотивированного поведения. Наконец, у гипоталамуса существуют двусторонние связи с корой больших полушарий, в особенности с лобными долями, необходимыми как для создания двигательных программ, так и для определения эмоциональных аспектов поведения. Если возникает метаболическая потребность, то больше других структур чувствительный к этому гипоталамус активирует все связанные с ним области мозга, выполняя тем самым функцию пейсмекера – водителя ритма их активности. В свою очередь, связанные с гипоталамусом структуры мозга способны тормозить или усиливать его активность. Особая роль в этом отношении принадлежит коре, тормозящие влияния которой могут подавить или отсрочить удовлетворение той или иной потребности: например, многие верующие люди сознательно ограничивают себя в еде во время поста.

Изучение влияния нейротрансмиттеров на нейроны гипоталамуса показало, что разные вещества по-своему изменяют характер поведения. Так, например, нанесение норадреналина на паравентрикулярные ядра гипоталамуса сильно стимулирует аппетит, причём, при возможности выбирать ту или иную пищу, подопытные животные предпочитают продукты с высоким содержанием углеводов. Точно так же действует и самый сильный возбудитель аппетита – нейропептид Y, а ещё один пептид – галанин избирательно повышает потребление жиров.

Некоторые вещества, способные изменять характер поведения, попадают в гипоталамус из крови, проходя через гематоэнцефалический барьер. Так, например, ангиотензин, образующийся в повышенном количестве при уменьшении объёма циркулирующей крови, проникает в гипоталамус и активирует в нём группу чувствительных нейронов, что приводит, в конечном счете, к усиленному потреблению воды. Некоторые пептидные гормоны образуются в двенадцатиперстной кишке и верхнем отделе тонкого кишечника в связи с поступлением туда пищи (например, холецистокинин, бомбезин и т.п.). Они попадают в кровь в очень небольших количествах, однако определённые нейроны гипоталамуса к этому высоко чувствительны: действие таких гормонов ведёт к уменьшению или прекращению приёма пищи. К таким же последствиям приводит и действие гормона поджелудочной железы инсулина, способного медленно проникать из крови в ликвор: в гипоталамусе найдены места связывания инсулина.

Таким образом, гипоталамус, обладающий всей информацией о состоянии внутренней среды организма, способен управлять её гомеостатическими параметрами с помощью нервных и эндокринных механизмов регуляции на основе уже имеющихся, накопленных ранее резервов. Но, кроме того, гипоталамус ещё и побуждает другие области мозга специфически изменить поведение, направить организм на такие действия, которые обеспечат восстановление потраченных ресурсов или их заготовку впрок.

13.4. Лимбическая система мозга

В 1937 году нейроанатом Джеймс Папец (Papez J.) обратил внимание на существование многочисленных связей между структурами мозга, расположенными в виде кольца в области соединения ствола и полушарий, и предложил объединить их в лимбическую систему (лат. limbus – кайма). Кольцо лимбической системы образуют мамиллярные тела, гиппокамп, миндалины и свод, проходящий дугой от гиппокампа к мамиллярным телам и перегородке. Нейроны перегородки образуют несколько пучков аксонов, соединяющих её с мамиллярными телами, миндалинами и гиппокампом – в результате образуется кольцо, по которому может циркулировать возбуждение.

В лимбическую систему принято также включать соседние области древней и старой коры мозга: прилегающие к гиппокампу грушевидные доли и поясные извилины – они занимают медиальную поверхность больших полушарий непосредственно над мозолистым телом и, как пояс, огибают таламус. Лимбические структуры связаны хорошо развитыми проводящими путями с обонятельным мозгом и гипоталамусом (Рис. 13.3).

В частности гипоталамус соединён с гиппокампом и перегородкой волокнами свода, а терминальной полоской (stria terminalis) и вентральным амигдалофугальным путём – c миндалиной. Через гипоталамус лимбическая система взаимодействует со средним мозгом, через гипоталамус и передние ядра таламуса она связана с лобной корой. Гиппокамп и миндалины, расположенные в височных долях, непосредственно сообщаются с ассоциативными областями коры.

Папец высказал предположение о реципрокных отношениях гипоталамуса и кортикальных центров познания и эмоций, он считал, что, получив информацию от кольца лимбических структур, гипоталамус начинает затем взаимодействовать с корой через поясную извилину и передние ядра таламуса. Эти представления существенно пересмотрел и развил американский физиолог Пол Мак-Лин (McLean P. D.), который обосновал представление о важной роли "висцерального мозга" для регуляции эмоционального поведения и коррекции внешних и внутренних сигналов. Он также предложил модель иерархического деления мозга на три отдела в соответствии с этапами его эволюционного развития (Рис. 13.4): 1) древний мозг рептилий (ствол, промежуточный мозг и базальные ганглии); 2) старый мозг млекопитающих (структуры лимбической системы) и 3) новый мозг млекопитающих (кора больших полушарий).

Функция древнего мозга рептилий, по мнению Мак-Лина, заключается в контроле врождённых поведенческих актов; такой мозг недостаточно пластичен и обеспечивает выживание только при постоянных условиях среды. Древний мозг млекопитающих ("висцеральный мозг") формирует эмоции, увеличивает объём памяти и даёт возможность возникновения простых форм поведения. Новый мозг прибавляет возможность произвольного управления эмоциями, прогнозирования поведения и т.п. Мак-Лин рекомендовал не забывать, что в каждом человеке присутствует мозг лошади и крокодила, и с этим обстоятельством порой приходится считаться.

Изучение функций лимбической системы проводилось путём наблюдения за последствиями удаления или разрушения отдельных её структур (например, миндалин, гиппокампа), электрической стимуляции этих структур, регистрации их электрической активности (с помощью вживлённых электродов) при различных формах поведения. Использование методов нейрохимии и нейрофармакологии позволило обнаружить различные нейромедиаторы и рецепторы у нейронов, входящих в состав лимбической системы.

Применение метода самораздражения (См. 13.5) позволило обнаружить такие структуры мозга, электрическая стимуляция которых вызывает приятные или, напротив, неприятные ощущения. К позитивным эмоциогенным зонам относятся латеральный и перивентрикулярный гипоталамус, перегородка, покрышка среднего мозга: здесь сосредоточены тела или аксоны моноаминэргических нейронов, использующих в качестве медиаторов дофамин или норадреналин. Негативных эмоциогенных зон в мозгу гораздо меньше, чем позитивных, а многие структуры (и в том числе, по-видимому, гиппокамп) нейтральны – их стимуляция не сопровождается приятным или неприятным ощущением (в мозгу крысы около 60% структур нейтральны, раздражение 35% исследованных областей мозга вызывает удовольствие, а стимуляция остальных 5% – страдание). В мозгу человека также оказалось больше областей, раздражение которых вызывает приятные ощущения или удовольствие.

13.5. Роль мезолимбической системы в формировании мотиваций

Классическая теория мотиваций объясняла их возникновение и прекращение по следующей схеме: лишение еды или питья, температурного комфорта или полового партнёра (для такого рода ограничений часто используется термин депривация) приводит к мотивированному поведению, в результате которого существующая потребность удовлетворяется, а как только будет достигнута эта цель, мотивация просто утратит смысл. В начале 50-х годов ХХ столетия Дж. Олдс (Olds J.) выполнявший диссертацию под руководством профессора П. Милнера (Milner P.), исследовал поведение крыс со вживлёнными в мозг стимулирующими электродами. Обычно крысы, подвергнувшиеся неприятному электрическому разряду, не возвращались в то место, где на них действовал ток. Но как-то одна из подопытных крыс стала регулярно к нему возвращаться. Тогда Олдс, посчитав что у этой крысы низкий порог чувствительности, увеличил силу раздражителя, но добился только того, что крыса ещё охотнее стала возвращаться к месту электрической стимуляции. При вскрытии животного было установлено, что стимулирующий электрод оказался в заднем отделе гипоталамуса, что первоначально не планировалось в экспериментах Олдса.

Тогда Олдс и Милнер вживили электроды в эту же область мозга другим крысам, а в клетке, куда их помещали, сделали педаль, при нажатии на которую замыкалась электрическая цепь, и мозг немедленно подвергался действию тока (Рис.13.5).

Это нововведение привело к открытию феномена самораздражения: крысы непрерывно нажимали на педаль (отдельные животные делали это несколько тысяч раз на протяжении одного лишь часа) и явно предпочитали такое занятие даже приёму пищи, несмотря на предшествующее голодание в течение суток. Так возникло представление о "центрах удовольствия (поощрения)".

Дальнейшими исследованиями такие центры были найдены и в других областях мозга, а наряду с ними удалось обнаружить структуры, стимуляции которых животные всячески стремились избежать – эти регионы представляют собой "центры избегания (наказания)". Известный исследователь мозга Г.Мэгун (Magoun H. W.) задал в связи с этими экспериментами хороший риторический вопрос: "Не находится ли рай и ад в мозгу животного?" Вскоре этот вопрос стал уместным и применительно к мозгу человека, в котором также были найдены как центры удовольствия, так и области, раздражение которых сопровождалось неприятными ощущениями. Всё это позволило рассматривать мотивации с гедонистической точки зрения (от греч. hedone – удовольствие), согласно которой поведение мотивируется не только неприятными ощущениями, побуждающими к определённым действиям, но и получением удовольствия от результата таких действий. В процессе приобретения жизненного опыта образуются следы памяти о совпадении определённых действий с исчезновением неприятных ощущений и получением удовольствия, и эта память начинает использоваться в дальнейшем.

В настоящее время известно, что переживание удовольствия связано с активацией областей мозга, которые иннервирует мезолимбическая система, образованная дофаминэргическими нейронами (Рис. 13.6).

Их тела находятся в области вентральной покрышки среднего мозга, а аксоны оканчиваются в префронтальной и лимбической коре, перегородке, обонятельной луковице, миндалинах и прилегающем ядре (nucleus accumbens), расположенном кпереди от полосатого тела. Экспериментальное исследование этих областей мозга в последние годы проводилось с помощью введённых в них микроканюль (тончайших трубочек), через которые удаётся получать образцы внеклеточной жидкости для исследования, а также медленно вводить через них различные фармакологические вещества. Такие исследования позволили обнаружить, на какой стадии мотивированного поведения из окончаний мезолимбических нейронов выделяется больше всего дофамина: во время мотивированного поведения, направленного на удовлетворение потребности, или при достижении результата?

В одном из опытов голодных крыс помещали в одну из половин разделённой перегородкой клетки, а на другой половине находилась привлекательная для них еда, которая была для животных недоступна. Через 20 минут перегородку убирали и тогда крысы могли есть. Этот опыт повторяли на протяжении двух недель, чтобы у крыс образовался определённый поведенческий опыт, а затем определяли уровень дофамина в добытой через микроканюлю внеклеточной жидкости прилегающего ядра (n. accumbens). Обнаружилось, что во время ожидания корма он не выше среднего значения, но после еды дофамин выделяется в заметно большем количестве. В другом эксперименте, выполненном по такой же схеме, в одну половину клетки помещали самца крысы, а в другую – самку, находящуюся в состоянии течки. И здесь было найдено, что выделение дофамина связано не с приближением полового партнёра, а с последующим спариванием.

После избирательного повреждения нейронов мезолимбической системы специфическим токсином (6-гидрооксидофамин) на одной стороне мозга подопытные животные перестают пользоваться вживлёнными с этой стороны электродами для самораздражения, но продолжают раздражать у себя центры удовольствия на другой стороне мозга: при этом в прилегающем ядре повышается концентрация дофамина. Если вводить через микроканюлю антагонисты дофамина, то животные либо прекращают, либо уменьшают самораздражение. Таким образом, дофаминэргические нейроны обеспечивают "награду" за совершённые действия (можно сказать, что мозг сам себя награждает) и такая деятельность становится, по мере приобретения опыта, важным механизмом активации поведения, усилением средств поиска.

Нельзя не отметить, что ряд наркотических веществ, от действия которых человек или животное может попасть в зависимость, усиливают выделение дофамина или препятствуют его нормальному расщеплению, поддерживая тем самым, повышенную концентрацию. Здесь складывается ситуация, по сути напоминающая действия крысы, непрерывно нажимающей на педаль для получения удовольствия.

13.6. Физиологические механизмы боли

При механическом, термическом или химическом повреждении тканей организма возбуждаются особые рецепторы с высоким порогом чувствительности. Это болевые рецепторы или ноцицепторы, принадлежащие афферентным нейронам, тела которых располагаются в спинальных ганглиях. В составе задних корешков спинного мозга возбуждение поступает в спинной мозг, где в задних рогах происходит первое переключение сигналов в ноцицептивной системе. Нейроны задних рогов спинного мозга передают полученную информацию дальше с помощью своих аксонов, которые переходят через переднюю серую спайку на противоположную сторону и двумя-тремя сегментами выше входят в состав переднебокового канатика, поднимающегося к таламусу и образующего таким образом спиноталамический тракт. Часть восходящих в переднебоковом канатике аксонов направляется к нейронам ретикулярной формации – это спиноретикулярный тракт (Рис. 13.7).

Спиноталамический тракт позволяет точно определять место действия болевого стимула, поскольку он заканчивается на тех же ядрах таламуса, где переключаются проводники тактильной и проприоцептивной чувствительности. Конвергенция тактильных и болевых сигналов на одних и тех же нейронах таламуса обеспечивает их одновременную проекцию преимущественно на первичную соматосенсорную кору.

Спиноретикулярный тракт заканчивается диффузно в нескольких областях ретикулярной формации ствола мозга. Получающие сигналы нейроны ретикулярной формации связаны с медиальными ядрами таламуса. Нейроны этих ядер таламуса не имеют определённого представительства в коре, их отростки веерообразно распределены по разным её регионам. Считают, что переданная по спиноретикулярному пути информация от болевых рецепторов играет роль сигнала общей тревоги, оказывает общее возбуждающее действие.

Относительно недавно методом позитронно-эмиссионной томографии было установлено, что при болевом раздражении всегда повышается активность передней части поясной извилины, которая является компонентом лимбической системы мозга. Эта активность связана с поступлением информации по спиноретикулярному пути к медиальному таламусу, а от него – к поясной извилине. Результатом активации лимбической системы является эмоциональная реакция на боль. Одновременно с этим ощущение боли сопровождается выраженными вегетативными реакциями. Их появление можно связать с активностью ретикулярной формации, в которой содержатся многие важные центры вегетативной регуляции.

На примере изменяющегося болевого восприятия интересно наблюдать роль нисходящего торможения. Многочисленные ноцицепторы (чувствительные окончания болевых нейронов) мультимодальны, т.е. их можно возбудить механическим воздействием (укол, щипок), термическим, химическим (если на них действуют освобождающиеся при повреждении клеток вещества типа брадикинина, серотонина, гистамина, простагландинов и т.п.), однако порог их чувствительности довольно высок. Чувствительные нейроны передают возбуждение на нейроны задних рогов спинного мозга, по-видимому, с помощью нескольких нейротрансмиттеров (чаще других упоминаются вещество Р, холецистокинин и соматостатин); возможно, что некоторые из них выполняют роль нейромодуляторов.

К этим переключательным нейронам задних рогов спускаются из головного мозга нисходящие тормозные пути, с помощью которых передача болевых импульсов может быть прервана. Нисходящие пути начинаются от нейронов головного мозга, группирующихся вокруг водопровода и в большом ядре шва: они синтезируют энкефалины, уменьшающие образование вещества Р в задних рогах. В других нисходящих путях в качестве медиаторов используются биогенные амины, основной такой путь начинается в ядрах голубого пятна, где синтезируется норадреналин. Предполагают, что он взаимодействует в спинном мозгу с альфа-адренорецепторами, а вследствие этого активируются подавляющие передачу болевой чувствительности механизмы.

Высокая плотность опиатных рецепторов обнаружена в лимбической системе и медиальной части таламуса. С этим интересно сопоставить многочисленные примеры временного снижения или даже утраты болевой чувствительности при определённых эмоциональных состояниях. У женщины во время родов, у солдата во время боя, у религиозного фанатика во время самоистязания болевой порог резко повышается, что можно объяснить как торможением передачи болевых сигналов, так и изменением характера эмоциональных реакций в ответ на болевые стимулы

13.7. Роль миндалин в образовании мотиваций

Если гипоталамус является важнейшей мотивирующей структурой мозга, активирующейся при изменении постоянства внутренней среды, то на внешние стимулы, вызывающие мотивацию или же изменяющие уже мотивированное поведение, раньше гипоталамуса откликаются нейроны миндалевидных ядер или миндалин мозга, которые относятся к лимбической системе и находятся в височных долях больших полушарий. Электрическое раздражение миндалин у людей чаще всего вызывает чувство страха и тревоги, двустороннее удаление миндалин у экспериментальных животных по-видимому лишает их чувства страха. Каков же механизм формирования такой мотивации? Поиск ответа на этот вопрос побудил к исследованию афферентных и эфферентных связей миндалин.

Есть два важных источника афферентной информации для миндалин: сенсорные ядра таламуса и кора, преимущественно вторичные слуховые области и полимодальные ассоциативные поля (Рис. 13.8).

При действии внешних стимулов сенсорная информация раньше поступает от таламуса и вызывает примитивную реакцию, на фоне которой приходит информация, уже переработанная в коре. Оба афферентных потока направляются к базолатеральным ядрам миндалин, где пришедшие сигналы перерабатываются и передаются нейронам центрального ядра миндалин. От клеток центрального ядра начинаются эфферентные пути миндалин, которые направляются к латеральному гипоталамусу и стволу мозга. При возникновении страха активация миндалин приводит к последующему быстрому повышению частоты сокращений сердца и артериального давления, учащению дыхания, выделению гормонов и другим проявлениям симпатоадреналовой реакции и стресса. Такими же последствиями сопровождается раздражение центрального ядра миндалины электрическим током, тогда как его разрушение приводит к исчезновению вегетативных реакций в ответ на действие стимулов, обычно вызывающих страх.

Помимо этого существует эфферентный путь от миндалин к коре, в особенности к орбитофронтальной области и поясной извилине, этот путь важен для осознания переживаемых ощущений. Кроме того, ядра миндалин имеют реципрокные соединения с гиппокампом, а также получают афферентную проекцию от гипоталамуса, хотя она и уступает по мощности эфферентным влияниям миндалин на гипоталамус. И ещё необходимо отметить связь миндалин с мезолимбической системой, прежде всего с прилегающим ядром (n. accumbens).

У кроликов можно выработать условный рефлекс на нейтральный звуковой стимул, подкрепляя его болевым действием электрического тока. Болевое раздражение всегда сопровождается повышением частоты сокращений сердца, артериального давления, учащением дыхания и т.п. Когда образуется условный рефлекс, такая же реакция наблюдается и на прежде нейтральный звуковой раздражитель, который начинает вызывать у животного состояние страха. Если теперь удалить или разрушить миндалины, либо ввести в них специфические блокаторы синаптической передачи – реакция страха исчезнет. Таким образом, не только врождённые, но и приобретённые мотивации страха связаны с обязательным участием миндалин.

Роль миндалин не сводится только к мотивации страха. Хотя при их повреждении не исчезают совсем мотивации голода или жажды, но в пищевом и питьевом поведении наступают заметные перемены. Подопытные животные перестают отличать предпочитаемую раньше вкусную пищу от невкусной и постоянно берут в рот даже несъедобные предметы. У них пропадает врождённая или выработанная до операции разборчивость в питье, и, например, подопытные крысы начинают пить растворы с неприятным для нормальных животных запахом. У них изменяется половое поведение: животные становятся гиперсексуальными и готовы спариваться даже с представителями другого вида. Таким образом, значение миндалин становится особенно заметным в тех случаях, когда для формирования мотивированного поведения одновременно требуется учесть существование нескольких внешних факторов.

13.8. Гомеостатическое и поведенческое регулирование температуры тела

Жизнедеятельность многих клеток человеческого организма, процесс их деления и развития можно наблюдать вне организма (in vitro), если, конечно, обеспечить им необходимые условия существования. Одним из обязательных условий является поддержание постоянной температуры – 37° С, поскольку большая или меньшая температура изменит скорость и характер обменных процессов и может оказаться губительной для клеток. При выращивании клеток вне организма постоянную температуру им обеспечивает термостат, в самом организме терморегуляцию осуществляют специальные механизмы гомеостатического регулирования. Кроме того, холод или жара побуждают человека к действиям, направленным на достижение температурного комфорта. Комфортно он ощущает себя в термонейтральной зоне внешней среды – примерно 27-28° С для обнажённого человека (здесь уместно напомнить о его тропическом происхождении), с помощью одежды ощущение комфорта может быть достигнуто при меньшей температуре.

Одежда препятствует выведению тепла из организма, которое отдаётся прилегающему к поверхности тела слою воздуха (теплопроведение или конвекция), излучается к предметам, нагретым меньше, чем температура поверхности тела (32-33° С), а также выделяется при испарении пота с поверхности тела. В нагретом воздухе и в окружении горячих предметов путём конвекции и теплоизлучения в организм поступает дополнительное тепло и тогда единственным способом его выведения становится потоотделение, да ещё некоторое количество тепла уходит из организма при дыхании в связи с испарением водяных паров, содержащихся в выдыхаемом воздухе.

Тепло постоянно образуется в организме в ходе обменных процессов (первичная теплота), кроме того, при совершении любой работы расщепляются обеспечивающие её энергией ранее синтезированные вещества, что также сопровождается образованием тепла (вторичная теплота). Особенно много тепла образуется в мышцах, где даже в условиях покоя поддерживается мышечный тонус, а на его поддержание расходуется энергия.

Постоянная средняя температура тела может сохраняться в том случае, когда теплоотдача и теплопродукция уравновешены. Но непостоянная температура среды то и дело изменяет теплоотдачу, а интенсивность обмена и разный объём выполняемой работы меняют теплопродукцию, отчего баланс, казалось бы, должен всё время нарушаться, однако этого не происходит благодаря эффективно действующим механизмам терморегуляции.

Центр терморегуляции находится в гипоталамусе, к которому поступает афферентная информация от холодовых и тепловых терморецепторов кожи, внутренних органов и спинного мозга. Помимо периферических терморецепторов существуют центральные, они находятся в переднем гипоталамусе, в его преоптической области. Это тепловые и холодовые термочувствительные нейроны, которые изменяют частоту своих разрядов в ответ на незначительное повышение или понижение температуры крови, протекающей через мозг. Передний отдел гипоталамуса – это термоафферентная область, здесь происходит суммация всех температурных сигналов. Регулируемым параметром оказывается средняя температура близкая к 37° С, что является заданным, установочным значением, его внутренним эталонным входом (англ. set point).

При отклонении средней температуры от заданного значения гипоталамус корректирует вегетативную и эндокринную регуляцию, а также реакции скелетных мышц, чтобы одновременными изменениями теплоотдачи и теплопродукции выровнять отклонение. Когда из-за повышения внешней температуры начинает нарастать средняя температура тела, происходит рефлекторное расширение поверхностных сосудов при одновременном сужении сосудов внутренних органов: в результате кровоток через кожу может увеличиться в несколько раз и повысить её температуру (румянец после бани обусловлен именно этим механизмом). Но, если температура среды окажется выше, чем на поверхности кожи, вывести тепло путём конвекции или теплоизлучения невозможно и единственным остающимся способом освобождения от излишков тепла становится выделение пота. Это тоже рефлекторный и управляемый гипоталамусом механизм, который реализуется с помощью холинэргических симпатических волокон, иннервирующих потовые железы. При длительном действии жары постепенно понижается интенсивность обменных процессов и уменьшается мышечный тонус. Уменьшение теплопродукции облегчает приспособление к жаре.

При действии холода происходит перераспределение кровотока от поверхностных сосудов к сосудам внутренних органов – это снижает температуру поверхности и уменьшает теплоотдаду. Наряду с этим повышается тонус мышц и может возникнуть непроизвольная мышечная дрожь, что сопровождается повышенным образованием тепла. При длительном действии холода увеличивается секреция гормонов (особенно тироксина в щитовидной железе), стимулирующих освобождение энергии и образование тепла. Реакции, направленные на сохранение тепла в организме, контролируют задние отделы гипоталамуса, которые, в отличие от переднего гипоталамуса, не имеют собственных термочувствительных нейронов, а играют роль эффекторного отдела.

Одна лишь гомеостатическая терморегуляция не может обеспечить сохранение средней температуры тела на заданном уровне. При большом диапазоне изменений температуры среды эта задача решается и с помощью поведенческой терморегуляции. Стремление к температурному комфорту заставляет искать и находить нужные условия обитания. Необходимым для этого действиям можно обучаться, что, например, обнаруживается в эксперименте с крысами, которые нажатием кнопки могли направлять в клетку холодный воздух и делали это при каждом повышении наружной температуры, но не прикасались к кнопке, если температура воздуха была равной 22° С. Человек, как известно, решает проблемы терморегуляции с помощью соответствующей одежды, отопления помещения или кондиционирования воздуха и, на основе своего опыта, стремится предупредить наступление субъективно неприятных ощущений перегревания или переохлаждения. Впрочем, постоянная жизнь в температурном комфорте ведёт к уменьшению эффективности физиологических механизмов терморегуляции и увеличивает риск простуды. Этому можно противопоставить хорошо известные средства закаливания, обеспечивающие регулярную тренировку физиологических механизмов терморегуляции.

13.9. Механизмы регуляции пищевого поведения

13.9.1. Поступление и усвоение пищи

Пища служит единственным источником энергетических и пластических, т.е. строительных ресурсов для организма. Она механически измельчается во рту, а затем расщепляется под действием ферментов желудка и кишечника на вещества, способные оттуда всасываться в кровь. Из множества самых разнообразных углеводов, жиров и белков растительного или животного происхождения получаются сравнительно простые молекулы: углеводы расщепляются до моносахаров (прежде всего это глюкоза), жиры – до жирных кислот, белки – до аминокислот. Всасывание таких веществ из кишечника в кровеносные капилляры приводит к временному повышению их концентрации в крови, которая сравнительно быстро снижается до обычного постоянного уровня по мере использования и резервирования поступивших продуктов клетками. При повышении в крови уровня сахара увеличивается секреция инсулина. Этот гормон играет важную роль в усвоении поступивших продуктов: он способствует транспорту глюкозы и аминокислот из крови в клетки печени и скелетных мышц и активирует там ферменты, необходимые для синтеза гликогена из глюкозы и белков из аминокислот. Гликоген прежде называли животным крахмалом, его сложная молекула является углеводным запасом на "чёрный день", когда не удастся добыть пищу. Если запас гликогена создан, а глюкоза продолжает поступать с пищей, инсулин стимулирует образование из неё жирных кислот, которые из печени поступают в жировую ткань – так создаётся стратегический запас энергии. В определённом смысле это выгодно, поскольку калорическая ценность жира примерно вдвое выше по сравнению с углеводами, а, кроме того, жир, в отличие от гликогена, не связывает воду и потому создание жирового запаса не требует накопления ещё и большой массы воды.

Как только повышенная приёмом пищи концентрация в крови глюкозы, аминокислот и жирных кислот постепенно понизится и достигнет заданного уровня, возникает новая задача гомеостатического регулирования. Она связана с тем, что работающие клетки забирают из крови нужные себе вещества по потребности, причём многие клетки, например нервные или миоциты сердечной мышцы, могут это делать и без инсулина (что и понятно, поскольку они никогда не создают запасов). Кроме того, многие гормоны вынуждают клетки расставаться с энергетическими запасами, стимулируя в них расщепление гликогена и образование глюкозы. Такие гормоны называют контринсулярными, к ним относятся глюкагон, соматотропин, АКТГ, катехоламины, кортизол. Свою лепту вносит и нервная система: если влияние парасимпатических нервов способствовало расщеплению пищи в желудке и кишечнике, а также выделению инсулина (то есть созданию запаса энергии), то повышенная активность симпатических нервов увеличивает расход энергии и повышает уровень сахара в крови.

На первый взгляд регуляция пищевого поведения представляется довольно простой: как только накопленные запасы будут истрачены и уровень питательных веществ в крови начнёт снижаться, наступает время принимать пищу, а когда заданное значение питательных веществ восстановится – трапезу надо закончить. Остаётся, впрочем, неясным вопрос о том, как регулировать количество запасаемого жира, который в норме обеспечивает около 85% энергетических ресурсов (в то время как белки мышц – 14,5%, а гликоген печени – лишь 0,5%)? Если запас жира начнёт расти, то станет увеличиваться и масса тела, но многие люди долгие годы сохраняют постоянный вес – как регулируется его заданное значение? Быть может, существуют разные классы сигналов: одни из них, кратковременные, для управления однократным приёмом пищи – от голода до сытости, а другие, долговременные, – для сохранения заданного значения веса тела? Многое остаётся непонятным до настоящего времени.

13.9.2. Открытие центров голода и насыщения в гипоталамусе

В 1940 году было обнаружено (Hetherington A. W., Ranson S. W.), что после электролитического разрушения (т.е. с помощью введённых электродов, через которые пропускается ток) вентромедиальной области гипоталамуса у экспериментальных животных сразу после операции возникает гиперфагия (т.е. неумеренное потребление пищи), которая быстро приводит к ожирению (Рис. 13.9).

Со временем вес перестаёт расти, и одновременно крысы уменьшают потребление пищи, но стоит им немного поголодать и похудеть, как они снова увеличивают приём пищи и опять набирают свой большой вес. Его можно и ещё увеличить путём принудительного кормления животных через зонд, а после отмены такого кормления, они станут есть меньше и их вес уменьшится, но не до нормы, а до набранного после операции значения. Иными словами подопытные крысы "защищают" свой увеличенный вес подобно нормальным животным, хотя заданное значение этого веса стало иным.

В 1951 году Ананд и Бробек (Anand B. K., Brobeck J. R.) обнаружили, что после разрушения латерального гипоталамуса у крыс развивается афагия (отказ от пищи) и без принудительного кормления они могут погибнуть от голода в окружении самой вкусной еды. Если выходить их после операции путём принудительного кормления через зонд, то спустя некоторое время они начинают есть самостоятельно, хотя и меньше, чем нормальные крысы.

На основе этих открытий сложилось представление о механизме регуляции пищевого поведения двумя гипоталамическими центрами: вентромедиальный гипоталамус стал рассматриваться в качестве центра насыщения (поскольку его разрушение приводит к гиперфагии), а латеральный гипоталамус был объявлен центром голода (после его разрушения наблюдается отказ от пищи). Это представление на какое-то время оттеснило на задний план прежний взгляд на пищевое поведение, отводящий главное значение в формировании чувства голода сокращениям пустого желудка и соответствующей афферентной импульсацией от периферических рецепторов. Отказу от гипотезы периферической активации приёма пищи способствовал и хорошо известный факт регулярного возникновения чувства голода у людей, перенесших резекцию желудка, т.е. его оперативное удаление.

Сложившаяся в 40-50-х годах модель пищевого поведения объясняла чувство голода понижением уровня сахара в крови, а чувство сытости – его повышением во время еды выше заданного значения (глюкостатический механизм). Тогда же возникла гипотеза регулирования заданного значения количества жира в организме, при уменьшении или увеличении которого должно было соответственно увеличиваться или уменьшаться общее количество потребляемой пищи (липостатический механизм). В соответствии с этими представлениями понижение и повышение уровня сахара можно было считать кратковременными сигналами, действующими от начала до окончания еды, а изменения количества жира следовало рассматривать в качестве сигналов для долговременной регуляции. Если связать с этим существование специальных центров голода и насыщения в гипоталамусе, то объяснить возникновение пищевой мотивации можно очень легко. К сожалению, всё оказалось намного сложней.

13.9.3. Новые данные о центрах голода и насыщения

Постепенно выяснилось, что вентромедиальный гипоталамус вряд ли можно представлять только центром насыщения в традиционном понимании, а механизм гиперфагии, развивающейся после его разрушения, гораздо сложнее, чем казалось поначалу. Выяснилось, что разрушение вентромедиального гипоталамуса обычно сопровождается повышенной секрецией инсулина, который собственно и стимулирует образование жира из глюкозы. Это приводит к понижению уровня сахара в крови, животные начинают есть, но инсулин и этот, вновь поступивший сахар превращает в жир. Оказалось, что высокий уровень инсулина связан со стимуляцией поджелудочной железы блуждающим нервом: если перерезать веточку этого нерва, идущую к железе, то гиперфагия, возникающая после разрушения вентромедиального гипоталамуса, исчезнет, а ожирение не возникнет.

Кроме того, было установлено, что при разрушении вентромедиального гипоталамуса традиционно принятым способом повреждается ещё и большой пучок идущих к нему норадренэргических волокон, тела которых расположены в паравентрикулярных ядрах гипоталамуса. Если же повредить только эти ядра или норадренэргические волокна, направляющиеся к вентромедиальному гипоталамусу, то тоже возникнет гиперфагия и ожирение: выходит, что центром насыщения являются и эти структуры? Микроинъекция в паравентрикулярные ядра различных нейротрансмиттеров (норадреналин, ГАМК, нейропептид Y, галанин, опиоидные пептиды) стимулирует последующее потребление пищи, причём одни трансмиттеры склоняют животное к пище, богатой углеводами, а другие – жирами. В связи с этим можно предположить, что различные вещества ослабляют сигнал насыщения либо углеводами, либо жирами.

Не всё оказалось просто и с центром голода в латеральном гипоталамусе. При его разрушении, как правило, повреждаются проходящие поблизости чувствительные волокна тройничного нерва, доставляющие информацию ото рта и лица, а в настоящее время известно, что одна лишь перерезка волокон этого нерва ведёт к нарушениям пищевого поведения у крыс. В ряде случаев при разрушении латерального гипоталамуса повреждали и окружающие структуры базального переднего мозга и вентральную часть бледного шара, а такие нарушения сами по себе приводят к изменению пищевого поведения, которое выражается, например, в появлении отвращения к привлекательному корму, в частности к сахару. Кроме того, надо учесть и почти неизбежное повреждение дофаминэргических волокон, принадлежащих мезолимбической системе, а они, как известно, имеют отношение к получению удовольствия от принимаемой пищи. Можно говорить и о том, что разрушение латерального гипоталамуса приводит не только к афагии, но и к адипсии (прекращению питья), и к целому спектру моторных нарушений и общему дефициту реакций.

Какова же во всём этом роль самих нейронов латерального гипоталамуса? На этот вопрос, кажется, удалось ответить, когда их начали разрушать химическим способом: локальной инъекцией веществ, избирательно повреждающих только тела нейронов и не действующих на соседние волокна. Оказалось, что и в этом случае у животных развивается афагия. Дальнейшие исследования позволили обнаружить в латеральном гипоталамусе нейроны, которые активируются вкусом новой пищи, но утрачивают активность при её многократном приёме. Нейроны ещё одной разновидности возбуждаются при одном лишь виде пищи, но со временем начинают реагировать и на нейтральные стимулы, если они постоянно сопровождают еду. Это указывает на участие таких нейронов в формировании долговременной памяти, лежащей в основе образования условных рефлексов.

13.9.4. Факторы, определяющие пищевое поведение

Если попытаться суммировать результаты многочисленных и многолетних исследований вопроса о том, чем же активируется центр голода, то следует учесть все известные сигналы, на которые он может реагировать (Рис. 13.10).

Это и прямое действие сниженного уровня сахара на нейроны латерального гипоталамуса, и поступающая к ним афферентная информация от периферических глюкорецепторов, обнаруженных в печени, желудке и тонком кишечнике. Это и афферентные сигналы от механорецепторов пустого желудка. Но это и влияния на гипоталамус других структур мозга, активированных множеством факторов, так или иначе, связанных с приёмом пищи (особый вкус, запах, внешний вид, сервировка стола, привычное время, наличие компании и т.д.). Мы ещё вернёмся к этому вопросу при обсуждении долговременной регуляции пищевого поведения липостатическим механизмом.

Что приводит к активации центра насыщения? Во-первых, жевание и глотание пищи – информация об этом поступает от вкусовых и температурных рецепторов рта, от мышечных механорецепторов. Даже при мнимом кормлении, когда проглатываемая пища не попадает в желудок (что происходит после оперативного выведения пищевода наружу), животные не едят беспрерывно, если им предоставлена возможность брать пищу без ограничений. Во-вторых, растяжение пищей желудка и соответствующая стимуляция механорецепторов. В-третьих, действие образующихся при расщеплении пищи продуктов на хеморецепторы, находящиеся в тонком кишечнике. В-четвёртых, повышение уровня сахара в крови, оказывающее прямое влияние на нейроны гипоталамуса. В-пятых, попадающие в кровь местные гормоны желудочно-кишечного тракта, такие, как холецистокинин, бомбезин, соматостатин и т.п.: известно, что их введение голодным крысам уменьшает потребление пищи.

Однако, несмотря на существование такого количества ограничителей приёма пищи, немногие люди способны отказаться от предложенного высококалорийного лакомства, даже если они совершенно не испытывают голода. Так поступают не только люди: в одном из экспериментов крысам сразу после обычного кормления, когда животные насыщались и прекращали есть корм, давали хлеб или шоколад – от этих продуктов крысы не отказывались. Опыт продолжался 120 дней, в течение которых подопытные крысы потребляли примерно на 84% больше калорий, чем при обычном питании. В результате за время эксперимента их вес увеличился на 49%. В развитых странах процент людей, имеющих избыточный вес, очень высок, в США, например, среди взрослых излишний вес имеет каждый третий, а около 12% населения просто страдают от ожирения. Как это увязывается с представлением о заданном значении веса и липостатическом механизме его регуляции?

В 1994 году было обнаружено, что при увеличенном образовании жира в жировой ткани образуется лептин – гормон, уменьшающий активность центра голода в латеральном гипоталамусе и таким путём снижающий потребление пищи. Количество образующегося лептина регулируется с помощью обратной связи: если вводить его в организм, то жировая ткань уменьшит образование собственного гормона. Тогда возникло предположение, что ожирение может быть следствием дефектов системы лептиновой регуляции, связанных с нарушениями образования лептина или снижением чувствительности к нему нейронов гипоталамуса. Однако проверка этой гипотезы показала, что лептиновая система у тучных людей не нарушена.

А как влияет изобилие доступной пищи на образование лептина? В одном из экспериментов лептин вводили двум группам крыс, отличавшихся характером питания в течение трёх дней до введения гормона. Крысам одной группы давали столько еды, сколько они могли съесть, крысы второй группы получали половину от этого количества, т.е. оказывались на полуголодном пайке. Выяснилось, что введение лептина полуголодным крысам не влияет на образование гормона в жировой ткани: он продолжает там вырабатываться, а значит, их лептиновая система не зависит от внешних воздействий, а их аппетит не повышается. При пищевом изобилии крысы реагируют на введение лептина понижением образования собственного гормона. Их лептиновая система становится чувствительной к внешним факторам, и соответственно их аппетит поддаётся стимулированию. Другими словами, у тощих крыс аппетит оказывается меньшим по сравнению с толстыми, а это означает, что лептиновая система успевает приспособиться к новым условиям всего за три дня переедания.

В силу каких причин такая перестройка может произойти у человека? Ответить на этот вопрос можно, пожалуй, с помощью всего лишь одной цитаты: "Блины были такие великолепные, что выразить вам не могу, милостивый государь: пухленькие, рыхленькие, румяненькие. Возьмёшь один, чёрт его знает, обмакнёшь его в горячее масло, съешь – другой сам в рот лезет. Деталями, орнаментами и комментариями были: сметана, свежая икра, сёмга, тёртый сыр. Вин и водок целое море. После блинов осетровую уху ели, а после ухи куропаток с подливкой. Так укомплектовались, что папаша мой тайком расстегнул пуговки на животе…" (А. П. Чехов).

Можно ли утверждать, что люди только тогда садятся к столу, когда у них снижается уровень сахара в крови? Конечно, нет. В любом здоровом организме всегда достаточно энергетических запасов и есть механизмы саморегуляции, которые могут эти запасы мобилизовать для поддержания необходимого уровня глюкозы. Непрерывное наблюдение за уровнем сахара в крови крыс, осуществляемое с помощью постоянного внутривенного катетера, показало, что он отклоняется от среднего значения не более, чем на 1-2%. Но, если кормить крыс всегда в одно и то же время, то примерно за 10 минут до подачи еды уровень сахара снижается примерно на 8%. Такого снижения нет, если дать крысам еду неожиданно, в неурочное время. Оказалось, что причиной снижения уровня сахара перед ожидаемой едой является повышение секреции инсулина, что можно рассматривать, как реакцию на намерение принять пищу. Примечательно, что если ожидаемая пища не поступит, секреция инсулина, и уровень сахара вскоре вернутся к обычному среднему значению.

Таким образом, есть механизмы гомеостатического регулирования, способные сохранять постоянное значение сахара, а возможно и аминокислот, при разных пищевых рационах и разных моделях питания, от которых непосредственно зависит количество образующегося жира и масса тела. Заданный вес может меняться под влиянием меняющейся структуры питания и устанавливаться на новом уровне. В таких случаях со временем опять устанавливается баланс между энерготратами и количеством поступающих питательных веществ, но уже при новом заданном значении.

13.10. Питьевое поведение

13.10.1. Обмен воды и солей в организме

Вода в живых организмах является основным растворителем, в котором происходит большинство химических реакций. С помощью воды транспортируются питательные вещества, продукты обмена, молекулы физиологических регуляторов, она необходима для пищеварения в кишечнике, для регуляции температуры тела и для удаления отходов жизнедеятельности. У растений вода составляет до 90% их массы, у человеческого эмбриона – 93-95%, у новорождённого – 75% от веса тела. С возрастом содержание воды в организме уменьшается и составляет у взрослых людей около 60% (у худых – 70%, а у тучных – 50%, поскольку жировая ткань бедна водой). За сутки взрослый человек с массой тела 70 кг теряет около 2,3 л воды: 1400 мл с мочой, 800 мл испаряется с поверхности кожи и уходит в виде водяных паров при дыхании, 100 мл – с калом. В то же время около 1 л воды поступает в организм с выпитыми жидкостями, примерно столько же содержится в съеденной пище и около 300 мл воды образуется при окислительных процессах в тканях – в сумме те же 2,3 л.

Приведённые цифры достаточно условны, они могут изменяться в зависимости от окружающей температуры (жаркое лето или холодная зима, регулярное посещение бани и т.п.), характера питания (например, овощи и фрукты содержат много воды, а в белковой пище её меньше), физических нагрузок (увеличенные потери воды с потом) и индивидуальных привычек, связанных с потреблением жидкостей. Но при любом варианте механизмы гомеостатического регулирования у здорового человека поддерживают баланс между потреблением и потерей воды. При уменьшении оптимального количества воды в организме (которое можно рассматривать в качестве заданного значения) возникает жажда. Она появляется, если потеря воды составит примерно 0,5% от массы тела (например, при весе 70 кг ощущение жажды вызывает потеря всего лишь 350 мл жидкости). Утрата 10% от веса тела за счёт воды приводит к тяжёлой дегидратации (обезвоживанию), а потеря 20% является смертельной (10% = 7 л, которые теряются в норме за 2, 5 суток).

Обмен воды неразрывно связан с обменом солей, а поэтому, говоря о воде, следует обсуждать проблему водно-солевого баланса. Растворённые в воде соли, в первую очередь натрия, создают осмотическое давление, которое заставляет воду перемещаться в область их большей концентрации. В организме вода распределена в трёх жидкостных пространствах: внутриклеточном, где содержится 2/3 всей воды, межклеточном или интерстициальном – приблизительно 1/4, а остальные 7-8% воды приходятся на плазму крови, лимфу и ликвор. Более высокая концентрация натрия во внеклеточной жидкости и крови, по сравнению с внутриклеточной, создаёт большее осмотическое давление. Оно уравновешивается онкотическим давлением в клетках, создаваемым растворёнными там белковыми молекулами. Таким образом, все жидкости оказываются изотоничными относительно друг друга.

Если концентрация натрия в крови и внеклеточной жидкости повысится, эти жидкости становятся гипертоничными (например, за счёт поступления большого количества соли с пищей или в связи с большой потерей воды при интенсивном потении). В таком случае вода начнёт перемещаться в область большей осмотической концентрации, т.е. из клеток во внеклеточное пространство. Потеря воды клетками (клеточная дегидратация), разумеется, крайне нежелательна, а устранить её можно, лишь восстановив прежнее, т.е. изотоничное состояние внеклеточной жидкости, – для этого надо просто разбавить её водой. Часть воды для этого можно сэкономить на диурезе, уменьшив на время объём выделяемой мочи, но одновременно необходимо увеличить количество выпиваемой жидкости.

13.10.2. Регуляция водно-солевого равновесия и питьевого поведения

Контроль величины осмотического давления осуществляют центральные и периферические осморецепторы. Функцию центральных рецепторов выполняют определённые нейроны супраоптических ядер гипоталамуса, периферические рецепторы находятся преимущественно в печени и воротной вене, несущей к печени кровь от пищеварительного тракта. Информация от периферических осморецепторов поступает к супраоптическим и паравентрикулярным ядрам гипоталамуса. При повышении осмотического давления нейроны гипоталамуса увеличивают секрецию вазопрессина, который называют также антидиуретическим гормоном (АДГ). В задней доле гипофиза, где оканчиваются аксоны этих нейронов, выделяющийся АДГ поступает в кровь и доставляется ею к почкам.

Структурными и функциональными единицами почек являются нефроны (в каждой почке содержится около 1 миллиона нефронов), образованные клубочком кровеносных капилляров, окружённым специальной капсулой, которая соединена с канальцами (См. рис.12.3). Из капилляров в капсулу фильтруется плазма крови (за исключением лишь содержащихся в ней белков), объём этого фильтрата составляет около 170-180 л/сутки у взрослого человека. В канальцах нефрона большая часть фильтрата, в котором содержатся нужные организму вещества, всасывается обратно (реабсорбируется свыше 99% фильтрата) и попадает в сеть кровеносных капилляров. В остающемся объёме, т.е. в конечной моче, содержатся ненужные продукты обмена, растворённые в воде. Моча собирается в почечные лоханки, затем по мочеточникам попадает в мочевой пузырь, откуда периодически выводится из организма. АДГ увеличивает реабсорбцию воды в канальцах нефрона, поэтому при повышенном выделении этого гормона меньше воды теряется с мочой, а диурез, естественно, уменьшается.

Повышение осмотического давления является главным, но не единственным стимулом для образования АДГ. Гипоталамус увеличивает образование этого гормона в ответ на афферентную импульсацию от болевых рецепторов и от волюморецепторов (рецепторов объёма) предсердий, если они меньше обычного наполняются кровью (например, вследствие её потери). Кроме того, образование АДГ стимулирует ангиотензин.

При уменьшении объёма внеклеточной жидкости и крови тоже возникает жажда, даже если осмотическое давление при этом не изменилось. Именно такая ситуация возникает после кровопотери, в том числе и у добровольных доноров. При уменьшении объёма циркулирующей крови меняется характер импульсации от волюморецепторов предсердий, а при падении кровяного давления ещё и от барорецепторов аорты и сонных артерий. Афферентная информация от этих рецепторов поступает в гипоталамус и стимулирует образование АДГ. Последующая задержка воды в почках способствует частичному восстановлению прежнего объёма внеклеточной жидкости.

Уменьшение объёма крови приводит к резкому снижению кровоснабжения почек, которые обычно получают около 20% минутного объёма кровотока. В ответ на уменьшение кровотока почки выделяют в кровь ренин, а он, действуя как фермент на содержащийся в крови белок ангиотензиноген, способствует образованию из него ангиотензина. Появление ангиотензина сопровождается тремя важными последствиями: 1) он оказывает мощное сосудосуживающее действие, что исключительно важно при потере крови; 2) стимулирует образование АДГ в гипоталамусе и одновременно способствует появлению жажды; 3) повышает секрецию альдостерона корой надпочечников. Образующийся альдостерон увеличивает задержку ионов натрия в почках, а вслед за ионами натрия, подчиняясь механизму осмоса, задерживается вода, которая обычно следует за натрием, как нитка за иглой.

Конечно же, с помощью одних лишь механизмов гомеостатического регулирования восстановить потерянный объём жидкости, как и нарушенное осмотическое равновесие, невозможно без увеличения количества потребляемой жидкости. И нарушенное осмотическое равновесие, и уменьшение объёма внеклеточной воды вызывают жажду, которую в первом случае можно назвать гиперосмотической, а во втором – гиповолемической, но в обоих случаях питьевая мотивация возникает в связи с повышением активности нейронов гипоталамуса (Рис. 13.11).

Меньше известно о том, какие физиологические механизмы способствуют окончанию питья. Несомненно, что главными из них являются восстановление осмотического равновесия и/или потерянного объёма жидкости, но, по-видимому, не только они. Имеет значение и уменьшение сухости во рту, которую вызывало пониженное слюноотделение – неизбежное следствие экономии воды. Некоторое значение имеет само питьё, т.е. связанная с ним моторная деятельность и сенсорные ощущения. Определённую роль играет соответствующая сенсорная информация от рецепторов желудка и двенадцатиперстной кишки.

Многие люди, а может быть и большинство, склонны пить, ещё до того, как возникнет жажда: именно по этой причине питьё может просто сопровождать еду. Интересно, что в таком случае количество потребляемой жидкости зачастую пропорционально степени солёности пищи, т.е. на основе своего опыта человек может научиться предупреждать сдвиг водно-солевого равновесия. Количество выпиваемой жидкости нередко существенно зависит от её вкуса, от существующей традиции потребления определённых напитков (чай, квас, пиво и т.п.).

13.11. Половое поведение

13.11.1. Критические периоды половой дифференцировки

Половые мотивации обусловлены, в первую очередь, действием половых гормонов на определённые структуры мозга. Но, как соотношение андрогенов и эстрогенов, так и функция (и даже структура) некоторых областей мозга у женщин и мужчин существенно отличаются. Эти отличия появляются впервые на седьмой неделе внутриутробного развития, когда определяется программа развития гонад: яичников у женщин, яичек у мужчин. До этого времени у зародышей, имеющих разный генетический пол (ХХ – будущие женщины и ХY – будущие мужчины) нет никаких биологических различий. Если во время этого периода, являющегося критическим, не появится специфический белок, синтез которого контролирует Y-хромосома, то дальнейшее развитие всегда происходит по пути формирования женского организма – для этого не требуется никакого дополнительного влияния, такой путь является стандартным.

В коротком плече Y-хромосомы содержится ген, кодирующий белок, который вызывает формирование яичек. Если блокировать действие этого белка у эмбриона экспериментального животного с генотипом XY, то разовьётся женский организм. И наоборот: введение такого белка генетически женскому эмбриону в критическом периоде приведёт к образованию мужского фенотипа. Таким образом, всё дальнейшее развитие по женскому или мужскому варианту определяет один ген Y-хромосомы.

Следующий критический период относится к третьему месяцу внутриутробного развития, когда у мужского плода уже сформируются яички и в них начинает вырабатываться тестостерон, а также гликопротеин, вызывающий разрушение клеток т.н. мюллерова протока – эмбриональной структуры, из которой формируются женские половые органы. Тестостерон в это же время способствует развитию вольфова протока, из которого формируются мужские половые органы. У женского плода тестостерона нет, а при его отсутствии всё происходит наоборот: из мюллерова протока развиваются женские половые органы, а клетки вольфова протока постепенно погибают, причём для этих процессов женские половые гормоны – эстрогены не требуются, а образующиеся яичники в это время ещё не выделяют гормоны. Если удалить яичники у женского плода экспериментального животного, то всё равно рождается особь женского пола.

Развитие мужского плода наряду с тестостероном могут определять материнские гормоны – эстрогены, которые попадают в его организм через плаценту. Все эти гормоны вызывают развитие мозга по мужскому типу, т.е. маскулинизируют его. Почему мужские и женские гормоны обладают одинаковым действием? Их молекулы, образующиеся из общего предшественника – холестерина, очень похожи и тестостерон в клетках-мишенях, где обычно есть специальный фермент, легко превращается в эстрадиол путём ароматизации бензольного кольца, а именно эстрадиол оказывает непосредственное маскулинизирующее действие. От материнских эстрогенов плоды обоего пола защищаются с помощью специального белка – a-фетопротеина, который специфически связывает эстрогены.

У мужского плода тестостерон проникает в клетки мозга (прежде всего гипоталамуса, а также миндалин, среднего мозга, спинного мозга, коры – особенно лимбической), где путём ароматизации превращается в эстрадиол, который и вызывает маскулинизирующий эффект. В чём состоит этот эффект? Он, прежде всего, выражается в том, что у взрослых мужчин и женщин секреция гонадотропных гормонов гипофиза происходит по-разному: у мужчин они выделяются равномерно, а у женщин – циклически, в зависимости от созревания фолликулов в яичниках. Это определяется различной чувствительностью гипоталамических нейронов, секретирующих гонадолиберины для гипофиза, к действию половых гормонов, и такие различия появляются ещё до рождения. Кроме того, маскулинизирующий эффект проявляется в более агрессивном поведении представителей мужского пола. Если вводить беременным самкам мышей тестостерон, то даже рождающиеся от такой беременности самки более агрессивны, чем обычно, в определённой мере изменяется и их половое поведение.

Ещё одна критическая фаза, определяющая появление половых различий мозга, приходится на т.н. перинатальный период – небольшой временной промежуток до и после рождения. Наличие или отсутствие тестостерона в этом периоде существенно сказывается на развитии полового диморфизма (существования двух различных форм у одного вида) мозга. Кроме уже указанных различий в характере секреции гонадотропных гормонов гипофиза и гонадолиберинов гипоталамуса, половой диморфизм проявляется в структуре определённых нейронов. У представителей разного пола нейроны преоптической области гипоталамуса и вентромедиального ядра имеют разную форму дендритов и самого ядра, что предопределяет различия в характере обработки афферентной информации. Электрическая стимуляция преоптической области у самцов многих видов животных немедленно стимулирует половую активность, а её разрушение приводит к угнетению полового поведения. У самок аналогичные изменения наблюдаются при стимуляции или разрушении вентромедиального ядра гипоталамуса.

У всех млекопитающих, в том числе и у человека, в преоптическом регионе гипоталамуса есть небольшое ядро, получившее название полодиморфного. Сразу после рождения в нём незаметны различия, связанные с полом, но довольно скоро выявляется почти в два раза большая величина его и большее содержание клеток у представителей мужского пола (Рис. 13.12).

Эти различия сохраняются до глубокой старости, хотя примерно после 40 лет величина ядра и у мужчин, и у женщин уменьшается. Этот вопрос изучался экспериментально путём наблюдения за развитием мышей, кастрированных сразу после рождения. Оказалось, что это у таких животных полодиморфное ядро с возрастом не увеличивается, но, если сразу после кастрации вводить им тестостерон, оно сможет развиваться как у интактных мышей.

Есть факты, свидетельствующие о том, что тестостерон способствует половой дифференцировке спинного мозга. В его крестцовом отделе у самцов крыс была выделена небольшая группа мотонейронов, управляющая двумя мышцами, связанными с половым членом. У взрослых самок таких мышц нет, так же, как и соответствующих мотонейронов. Но, если новорождённым самкам вводить в спинной мозг тестостерон, то можно замедлить постепенное отмирание этих мотонейронов.

Секреция тестостерона у зародыша мужского пола начинается примерно на седьмой неделе беременности и вскоре достигает высокого уровня – это первый критический период. На поздних сроках беременности содержание тестостерона в плазме крови плода становится низким, но сразу после рождения, т.е. в перинатальном периоде, быстро повышается – это второй критический период. К концу первого года жизни секреция тестостерона снова сильно уменьшается и остаётся на низком уровне до наступления пубертатного периода или периода полового созревания. Он начинается у мальчиков приблизительно с 12, а у девочек – с 11 лет, когда половые железы увеличивают секрецию гормонов. К 17-16 годам секреция гормонов достигает уровня, характерного для взрослых. До пубертатного периода, при низкой секреции половых гормонов мальчики и девочки мало различаются, а с началом этого периода формируются присущие каждому полу вторичные половые признаки: особенности роста волос и структуры кожи, характер формирования жировой ткани, развитие мышечной массы и грудных желёз, тембр голоса и т.п. И у мальчиков, и у девочек образуются как мужские половые гормоны (андрогены), так и женские (эстрогены), но у мальчиков преобладает первая группа гормонов, а у девочек – вторая: соотношение этих гормонов определяет индивидуальный тип маскулинизации или феминизации. Многие учёные склонны связывать проявления агрессивности в поведении с уровнем тестостерона, эта гипотеза кажется убедительной, если сравнить в среднем поведение мужчин и женщин.

13.11.2. Половые особенности когнитивной деятельности

Если вторичные половые признаки легко различимы, то связанные с полом особенности когнитивной деятельности далеко не так бросаются в глаза, тем не менее, они существуют. В экспериментах, проведённых на обезьянах разного возраста и пола, было показано, что повреждение префронтальной коры у молодых самцов приводит к таким же нарушениям пространственного различения, что и взрослых животных обоего пола. Повреждение этой же области коры у молодых самок такими нарушениями не сопровождается. Вместе с тем известно, что взрослые самцы превосходят самок в способности пространственного различения (так же, как и мужчины справляются с подобными задачами в среднем лучше, чем женщины). Найденные различия принято объяснять более ранним созреванием префронтальной коры у представителей мужского пола.

Ещё одна сторона деятельности мозга, в которой обнаружены зависящие от пола отличия, связана с функциональной асимметрией больших полушарий. У большинства правшей левое полушарие в большей степени осуществляет речевую функцию, а правое лучше справляется с пространственными представлениями, например, мысленным вращением какого-либо предмета. Именно поэтому представление о форме предмета, который нельзя увидеть, но можно потрогать, складывается легче, если ощупывать его левой рукой: в таком случае легче и определить, какой из изображённых на картинке предметов был предъявлен для опознания. Большинство взрослых, как мужчин, так и женщин, предпочитают выполнять этот тест левой рукой. Мальчики поступают так примерно с шести лет, что указывает на уже развившуюся у них асимметрию полушарий; девочки не обнаруживают признаков асимметрии примерно до 13 лет. На более раннюю специализацию полушарий у мальчиков указывает и тот факт, что повреждение левого, т.е. речевого полушария приводит у них к большим нарушениям речи, чем у девочек того же возраста, чей мозг ещё сохраняет высокую степень пластичности. По этой же причине различные формы детской афазии (нарушения речи) и речевой дефицит чаще наблюдаются у мальчиков.

При очаговых поражениях различных полушарий мозга у взрослых мужчин наблюдается чёткая связь между стороной повреждения и нарушенной функцией: патологический очаг в левом полушарии повреждает, как правило, речевую функцию, в правом – неречевые функции. У женщин такая зависимость проявляется в меньшей степени, что указывает на менее выраженную функциональную асимметрию. В дополнение к этому следует указать на превосходство женщин в беглости речи, скорости восприятия и узнавания некоторых объектов, например, человеческих лиц, в способности проводить арифметические вычисления. Мужчины в среднем превосходят женщин в способности формировать пространственные представления, логически мыслить и программировать целенаправленную моторную деятельность.

13.11.3. Биологические основы сексуального поведения

Мужское сексуальное поведение в значительной мере определяет тестостерон, действующий на специальные нейроны гипоталамуса. После кастрации сексуальный интерес уменьшается быстро и сильно. В 1959 году Бремер (Bremer J.) опубликовал результаты наблюдений 157 случаев кастрации, в половине из них уже в ближайшие недели наблюдалась полная асексуальность, у большинства остальных подвергнутых операции мужчин быстро исчезала способность к эрекции полового члена, хотя сексуальный интерес сохранялся. Параллельно с этим изменялись вторичные половые признаки: уменьшилось количество волос на лице, туловище, руках и ногах; кожа стала мягче, а мышечная сила уменьшилась. Лишь в отдельных случаях на протяжении нескольких месяцев сохранялась сексуальная активность, что, по-видимому, объяснялось действием андрогенов надпочечников.

С помощью инъекций тестостерона можно восстановить сексуальное поведение после кастрации. Первое доказательство такого рода было получено ещё в начале 20-х годов ХХ столетия, когда за медицинской помощью обратился 38-летний ветеран Первой мировой войны, у которого яички отсутствовали в результате осколочного ранения. Его половая дееспособность была восстановлена с помощью повторных введений тестостерона, хотя, разумеется, это не избавило пациента от бесплодия (ввиду отсутствия органа, в котором образуются гаметы).

Уровень тестостерона в крови не определяет, однако, степень половой потенции: для неё необходим лишь определённый минимальный уровень гормона, а в какой мере он превышен у того или иного мужчины – особой роли не играет. Известен эксперимент, в котором были кастрированы самцы морских свинок, предварительно разделённые на три группы (сильных, средних и слабых) в соответствии со своим половым поведением. После кастрации все животные стали асексуальными и тогда им начали вводить тестостерон в больших дозах, одинаковых во всех трёх подопытных группах. Половая потенция восстановилась, причём её проявления у животных трёх наблюдаемых групп оказались такими же разными, как и до операции, т.е. их также можно было разделить на сильных, средних и слабых, хотя уровень тестостерона у всех был одинаково высоким. Следовательно, индивидуальные отличия полового поведения определяются какими-то другими факторами, данные о физиологических механизмах которых пока отсутствуют.

Сексуальное поведение самок у многих видов грызунов в значительной степени зависит от уровня эстрогена и прогестерона, который циклически меняется. Именно этим объясняется то обстоятельство, что самки многих видов млекопитающих сексуально активны только в определённые периоды эстрального цикла. Сексуальное поведение женщин не связано в такой же мере с менструальным циклом и, скорее всего, управляется иначе. Неожиданно малое влияние на него оказывает даже оперативное удаление яичников. Существует предположение, что половое поведение женщин зависит не столько от эстрогенов, сколько от андрогенов надпочечников. Эта гипотеза основана на экспериментальных доказательствах, а также на установленных фактах корреляции половой активности женщин с уровнем андрогенов, но не эстрадиола. Кроме того, у женщин, перенесших хирургическую операцию одновременного удаления яичников и матки (что обычно тяжело переносится не только физически, но и психологически) восстановить половую мотивацию удаётся с помощью инъекций тестостерона, но не эстрадиола.

Резюме

Изменения гомеостатических параметров приводят в действие нервные и эндокринные механизмы их регуляции, направленные на восстановление заданного значения параметров. Одновременно с этим или заблаговременно формируется специфическое поведение, направленное на достижение той же цели. Главной мотивационной структурой мозга является гипоталамус, нейроны которого активируются притоком специфических афферентных импульсов и прямым влиянием гуморальных факторов. В мотивациях, связанных с действием внешних факторов важную роль играют миндалины мозга. Конкретные формы мотивированного поведения и определения мотивационной доминанты определяются сложными разновидностями взаимодействия между подкорковыми структурами и корой мозга, причём важную роль играет прежний поведенческий опыт и образованные следы памяти.

Вопросы для самоконтроля

205. Какая из указанных ниже структур не относится к мезолимбической системе?

А. Красное ядро; Б. Прилегающее ядро; В. Обонятельная луковица; Г. Перегородка; Д. Префронтальная кора.

206. С выделением какого нейромедиатора в прилегающем ядре связано получение удовольствия, как "награды" за совершённые действия?

А. Глутамат; Б. ГАМК; В. Глицин; Г. Дофамин; Д. Серотонин.

207. Какая структура мозга играет главную роль в формировании поведения, мотивированного, в первую очередь, внешними факторами?

А. Гипоталамус; Б. Таламус; В. Миндалина; Г. Гипофиз; Д. Гиппокамп.

208. Из какого источника миндалины мозга получают необходимую афферентную информацию раньше всего?

А. Таламус; Б. Гипоталамус; В. Орбитофронтальная кора; Г. Поясная извилина; Д. Вторичная слуховая кора.

209. Какая из перечисленных структур должна активироваться прежде других при изменениях гомеостаза и формировании биологических мотиваций?

А. Гипоталамус; Б. Гиппокамп; В. Лобная кора; Г. Височная кора; Д. Миндалины.

210. В чём состоит терморегулирующая роль переднего гипоталамуса?

А. Суммация температурных сигналов; Б. Регуляция интенсивности конвекции; В. Регуляция интенсивности теплоизлучения; Г. Регуляция потоотделения; Д. Регуляция теплопроведения.

211. В какой области нет термочувствительных нейронов?

А. Кожа; Б. Внутренние органы; В. Спинной мозг; Г. Передний гипоталамус; Д. Задний гипоталамус

212.. Какой из перечисленных ниже гормонов не относится к контринсулярным?

А. Глюкагон; Б. Тироксин; В. Соматотропин; Г. Адреналин; Д. Кортизол.

213. Какие клетки используют находящуюся в крови глюкозу без помощи инсулина?

А. Клетки печени; Б. Нервные клетки; В. Клетки соединительной ткани; Г. Клетки скелетных мышц; Д. Любые клетки получают глюкозу только при посредничестве инсулина.

214. Какой гормон способствует образованию жировой ткани?

А. Инсулин; Б. Глюкагон; В. Адреналин; Г. Соматотропин; Д. Кортизол.

215. Разрушение какого отдела гипоталамуса сопровождается афагией?

А. Вентромедиальный; Б. Латеральный; В. Передний; Г. Задний; Д. Паравентрикулярные ядра.

216. Что из перечисленного ниже является самым сильным активатором центра голода в гипоталамусе?

А. Жевание и глотание пищи; Б. Гипогликемия; В. Стимуляция механорецепторов растянутого желудка; Г. Действие гормонов желудочно-кишечного тракта на гипоталамус; Д. Действие продуктов расщепления пищи на хеморецепторы тонкого кишечника.

217. Какое вещество уменьшает активность центра голода в гипоталамусе?

А. Галанин; Б. Норадреналин; В. Нейропептид Y; Г. Лептин; Д. ГАМК.

218. При каком уменьшении процентного содержания воды от заданного значения с наибольшей вероятностью можно предсказать появление жажды?

А. 0,1%; Б. 0,2%; В. 0,3%; Г. 0,4%; Д. 0,5%.

219. Что может привести к нормализации повышенного осмотического давления крови?

А. Повышенное образование ренина; Б. Повышенное образование альдостерона; В. Повышенное образование вазопрессина; Г. Повышенный водный диурез; Д. Уменьшенное потребление воды.

220. В каком периоде развития определяется формирование мужского или женского фенотипа при генотипе XY?

А. В момент оплодотворения яйцеклетки, т.е. возникновения генотипа XY; Б. На седьмой неделе внутриутробного развития; В. На третьем месяце внутриутробного развития; Г. В перинатальном периоде; Д. В пубертатном периоде.

221. Под действием какого гормона в процессе внутриутробного развития формируется женский фенотип при генотипе ХХ?

А. Тестостерон; Б. Эстрадиол; В. Прогестерон; Г. Фоллитропин; Д. Этот процесс не зависит от гормонов.

222. Чем определяется половой диморфизм в характере секреции гонадотропных гормонов гипофиза?

А. Генотипом ХХ или ХY; Б. Действием материнских гормонов на развивающийся плод; В. Собственным a-фетопротеином плода; Г. Действием тестостерона; Д. Действием эстрадиола.

223. Что из перечисленного ниже не относится к вторичным половым признакам?

А. Особенности роста волос; Б. Структурные особенности кожи; В. Тип гамет; Г. Характер развития мышечной массы; Д. Характер развития грудных желёз.

224. В каком виде когнитивной деятельности мужчины в среднем превосходят женщин?

А. В беглости речи; Б. В скорости восприятия некоторых объектов; В. В арифметическом счёте; Г. В формировании пространственных представлений; Д. В узнавании человеческих лиц.

225. С действием какого из перечисленных гормонов связывают сексуальную активность женщин?

А. Гонадотропные гормоны гипофиза; Б. Андрогены надпочечников; В. Эстрадиол; Г. Прогестерон; Д. Суммарная активность эстрогенов.