Меню

Как из асинхронного движка сделать генератор. Асинхронный электродвигатель в качестве генератора

Швеллеры и двутавры

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.


В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

  • фазным;
  • или короткозамкнутым ротором.

Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.


Три отдельные обмотки статора могут быть соединены на заводе по схеме:

  • звезды;
  • или треугольника.

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.


В отдельных случаях может выполняться подключение проводов и кабеля другими способами.


К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.


Эти величины удобно выражать в векторной форме.

Особенности конструкции роторов

Двигатели с фазным ротором

Их снабжают обмоткой, выполненной по образцу статорной, а выводы от каждой соединяют с контактными кольцами, которые обеспечивают электрический контакт со схемой запуска и регулировки через прижимные щетки.

Такая конструкция довольно сложная в изготовлении, дорогая по стоимости. Она требует периодического наблюдения за работой и квалифицированного обслуживания. По этим причинам для самодельного генератора применять ее в таком исполнении нет смысла.

Однако, если имеется подобный двигатель и ему нет другого применения, то можно выводы каждой обмотки (те концы, которые подключаются к кольцам) закоротить между собой. Таким способом фазный ротор превратится в короткозамкнутый. Его можно подключать по любой рассматриваемой ниже схеме.

Двигатели с короткозамкнутым ротором

Внутри пазов магнитопровода ротора залит алюминий. Обмотка выполнена в виде вращающейся беличьей клетки (за что и получила такое дополнительное название) с замкнутыми накоротко по концам кольцами-перемычками.

Это самая простая схема двигателя, которая лишена подвижных контактов. За счет этого она длительно работает без вмешательства электриков, отличается повышенной надежностью. Ее и рекомендуется применять для создания самодельного генератора.

Обозначения на корпусе двигателя


Чтобы самодельный генератор надежно работал необходимо обращать внимание на:

  • , характеризующий качество защиты корпуса от воздействий внешней среды;
  • мощность потребления;
  • число оборотов;
  • схему соединения обмоток;
  • допустимые токи нагрузок;
  • КПД и косинус φ.

Принцип работы асинхронного двигателя в качестве генератора

В основу его воплощения заложен метод обратимости электрической машины. Если у отключенного от напряжения сети двигателя начать принудительно вращать ротор с расчетной скоростью, то в обмотке статора будет наводиться ЭДС за счет наличия остаточной энергии магнитного поля.

Остается только подключить к обмоткам конденсаторную батарею соответствующего номинала и по ним станет протекать емкостной опережающий ток, имеющий характер намагничивающего.

Чтобы происходило самовозбуждение генератора, а на обмотках формировалась симметричная система трехфазных напряжений, необходимо подобрать емкость конденсаторов, большую определенной, критической величины. Кроме ее значения на выходную мощность, естественно, влияет конструкция двигателя.

Для нормальной выработки трехфазной энергии с частотой 50 Гц необходимо поддерживать скорость вращения ротора, превышающую асинхронную составляющую на величину скольжения S, которая лежит в пределах S=2÷10%. Ее требуется поддерживать на уровне синхронной частоты.

Отход синусоиды от стандартного значения по частоте отрицательно повлияет на работу оборудования с электрическими двигателями: пилами, рубанками, различными станками и трансформаторами. На резистивных нагрузках с ТЭН и лампами накаливания это практически не сказывается.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

  • две напряжением 220 вольт;
  • одну - 380.


Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями.

На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то - 220.


Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Как рассчитать характеристики генератора по мощности двигателя и емкости конденсаторов

Для создания нормальных условий работы электрической машины необходимо соблюсти равенство ее номинального напряжения и мощности в режимах генератора и электродвигателя.

С этой целью подбирают емкость конденсаторов с учетом вырабатываемой ими реактивной мощности Q при различных нагрузках. Ее величину рассчитывают по выражению:

Q=2π∙f∙C∙U 2

Из этой формулы, зная мощность двигателя, для обеспечения полной нагрузки можно рассчитать емкость батареи конденсаторов:

С=Q/2π∙f∙U 2

Однако, следует учесть режим работы генератора. На холостом ходу конденсаторы станут излишне нагружать обмотки и нагревать их. Это приводит к большим потерям энергии, перегреву конструкции.

Для устранения подобного явления конденсаторы подключают ступенчато, определяя их количество в зависимости от приложенной нагрузки. Чтобы упростить подбор конденсаторов для запуска асинхронного двигателя в режиме генератора, создана специальная таблица.

Мощность генератора (кВА) Режим полной нагрузки Режим холостого хода
cos φ=0.8 cos φ=1 Q (кВАр) С (мкф)
Q (кВАр) С (мкф) Q (кВАр) С (мкф)
15 15,5 342 7,8 172 5,44 120
10 11,1 245 5,9 130 4,18 92
7 8,25 182 4,44 98 3,36 74
5 6,25 138 3,4 75 2,72 60
3,5 4,53 100 2,54 56 2,04 45
2 2,72 60 1,63 36 1,27 28

Для использования в составе емкостной батареи хорошо подходят пусковые конденсаторы серии K78-17 и им подобные с рабочим напряжением от 400 вольт и больше. Вполне допустимо заменить их металлобумажными аналогами с соответствующими номиналами. Собирать их придется параллельным подключением.

Использовать модели электролитических конденсаторов для работы в цепях асинхронного самодельного генератора не стоит. Они предназначены для цепей постоянного тока, а при прохождении синусоиды, меняющейся по направлению, быстро выходят из строя.

Существует специальная схема их подключения для подобных целей, когда каждая полуволна направляется диодами на свою сборку. Но она довольно сложная.

Конструктивное исполнение

Автономное устройство электростанции должно в полной мере обеспечивать работающего оборудования и выполняться единым модулем, включающим навесной электрощит с приборами:

  • измерения - вольтметром до 500 вольт и частотомером;
  • коммутации нагрузок - три выключателя (один общий подает напряжение от генератора на схему потребителей, а два остальных осуществляют подключения конденсаторов);
  • защит - , устраняющим последствия возникновения коротких замыканий или перегрузок и ), спасающее работников от пробоя изоляции и попадания потенциала фазы на корпус.

Резервирование основной схемы питания

Создавая самодельный генератор необходимо предусмотреть его совместимость со схемой заземления рабочего оборудования, а при автономной работе – надежно подключать к .

Если электростанция создается для резервного питания приборов, работающих от государственной сети, то использовать ее следует при отключении напряжения с линии, а при восстановлении - останавливать. С этой целью достаточно установить рубильник, управляющий всеми фазами одновременно или подключить сложную систему автоматики включения резервного питания.

Выбор напряжения

Схема на 380 вольт обладает повышенной опасностью поражения человека. Ее используют в крайних случаях, когда фазной величиной на 220 обойтись нет возможности.

Перегрузки генератора

Такие режимы создают излишний нагрев обмоток с последующим разрушением изоляции. Они возникают при превышении токов, проходящих по обмоткам из-за:

  1. неправильного подбора емкости конденсаторов;
  2. подключения потребителей повышенной мощности.

В первом случае необходимо тщательно следить за тепловым режимом во время холостого хода. При излишнем нагреве требуется корректировать емкость конденсаторов.

Особенности подключения потребителей

Общая мощность трехфазного генератора состоит из трех частей, вырабатываемых в каждой фазе, которая составляет 1/3 от общей. Ток, проходящий по одной обмотке, не должен превышать номинальную величину. Это надо учитывать при подключении потребителей, распределять их равномерно по фазам.

Когда самодельный генератор создан для работы от двух фаз, то он не может безопасно выработать электроэнергии больше, чем на 2/3 от общей величины, а если задействована всего одна фаза, то - только 1/3.

Контроль частоты

Следить за этим показателем позволяет частотомер. Когда его в конструкцию самодельного генератора не установили, то можно пользоваться косвенным методом: на холостом ходу выходное напряжение превышает номинальное 380/220 на 4÷6% при частоте 50 Гц.

Один из вариантов изготовления самодельного генератора из асинхронного двигателя и его возможности показывают в своем видеоролике владельцы канала Мария с Александром Костенко.

Товары

(13 голосов, в среднем: 4.5 из 5)

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил - переломил вдвое плату вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было. На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора, вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 - 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант - поставить на выход .

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика - «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео - работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay .

Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели - самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название - короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U 2 ·C·10 -6 ,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А Холостой ход
ёмкость, мкФ реактивная мощность, квар cos = 1 cos = 0,8
ёмкость, мкФ реактивная мощность, квар ёмкость, мкФ реактивная мощность, квар
2,0
3,5
5,0
7,0
10,0
15,0
28
45
60
74
92
120
1,27
2,04
2,72
3,36
4,18
5,44
36
56
75
98
130
172
1,63
2,54
3,40
4,44
5,90
7,80
60
100
138
182
245
342
2,72
4,53
6,25
8,25
11,1
15,5

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ - косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220/380 В.



За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:


Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.

Переделка асинхронного двигателя в генератор

Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.


Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.


То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.


Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.


Неодимовые магниты приклеены на супер клей.


Была сделана сетка из капроновой нити для укрепления.


Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.


Смола потихоньку стекает сверху вниз.


После застывания эпоксидной смолы, снимаем скотч.



Теперь все готов к сборке генератора.


Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.


Собираем, закрываем крышки.


Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.


Генератор из асинхронного двигателя работает отлично.Более подробную информацию смотрите в видеоролике.

Канал автора -

(АГ) является наиболее распространенной электрической машиной переменного тока, применяемой преимуществен­но в качестве двигателя.
Только низковольтные АГ (до 500 В пи­тающего напряжения) мощностью от 0,12 до 400 кВт потребляют более 40% всей вырабатываемой в мире электроэнергии, а годовой их выпуск со­ставляет сотни миллионов, покрывая самые разнообразные потребности промышленного и сельскохозяйственного производства, судовых, авиаци­онных и транспортных систем, систем автоматики, военной и специальной техники.

Эти двигатели сравнительно просты по конструкции, весьма на­дежны в эксплуатации, имеют достаточно высокие энергетические показа­тели и невысокую стоимость. Именно поэтому непрерывно расширяется сфера использования асинхронных двигателей как в новых областях техники, так и взамен более сложных электрических машин различных конструкций.

Например, значительный интерес в последние годы вызывает приме­нение асинхронных двигателей в генераторном режиме для обеспечения питанием как потреби­телей трехфазного тока, так и потребителей постоянного тока через вы­прямительные устройства. В системах автоматического управления, в сле­дящем электроприводе, в вычислительных устройствах широко применя­ются асинхронные тахогенераторы с короткозамкнутым ротором для пре­образования угловой скорости в электрический сигнал.

Применение асинхронного режима генератора


В определенных условиях эксплуатации автономных источников электроэнергии применение асинхронный режим генератора оказывается предпочтительным или даже единственно возможным решением, как, например, в высокоскоростных передвижных электростанциях с безредукторным газотурбинным приво­дом с частотой вращения п = (9…15)10 3 об/мин. В работе описан АГ с массивным ферромагнитным ротором мощностью 1500 кВт при п = =12000 об/мин, предназначенный для автономного сварочного комплекса «Север». В данном случае массивный ротор с продольными пазами прямо­угольного сечения не содержит обмоток и выполняется из цельной сталь­ной поковки, что дает возможность непосредственного сочленения ротора двигателя в генераторном режиме с газотурбинным приводом при окружной скорости на поверхности ро­тора до 400 м/с. Для ротора с шихтованным сердечником и к.з. обмоткой типа «беличья клетка» допустимая окружная скорость не превышает 200 - 220 м/с.

Другим примером эффективного применения асинхронного двигателя в генераторном режиме является давнее их использование в мини-ГЭС при устойчивом режиме нагрузки.

Отличаются простотой эксплуатации и обслуживания, легко включаются на параллельную работу, а форма кривой выходного напря­жения у них ближе к синусоидальной, чем у СГ при работе на одну и ту же нагрузку. Кроме того, масса АГ мощностью 5-100 кВт примерно в 1,3 — 1,5 раза меньше массы СГ такой же мощности и они несут меньший объем обмоточных материалов. При этом в конструктивном отношении они ни­чем не отличаются от обычных АД и возможно их серийное производство на электромашиностроительных заводах, выпускающих асинхронные ма­шины.

Недостатки асинхронного режима генератора,асинхронного двигателя(АД)

Один из недостатков АД - это то, что они являются потребителями значительной реактивной мощности (50% и более от полной мощности), необходимой для создания магнитного поля в машине, которая должна по­ступать из при параллельной работе асинхронного двигателя в генераторном режиме с сетью или от другого ис­точника реактивной мощности (батарея конденсаторов (БК) или синхрон­ный компенсатор (СК)) при автономной работе АГ. В последнем случае наиболее эффективно включение батареи конденсаторов в цепь статора параллельно нагрузке хотя в принципе возможно ее включение в цепь ро­тора. Для улучшения эксплуатационных свойств асинхронного режима генератора в цепь статора допол­нительно могут включаться конденсаторы последовательно или парал­лельно с нагрузкой.

Во всех случаях автономной работы асинхронного двигателя в генераторном режиме источники реактивной мощ­ности (БК или СК) должны обеспечивать реактивной мощностью как АГ, так и нагрузку, имеющую, как правило, реактивную (индуктивную) со­ставляющую (соsφ н < 1, соsφ н > 0).

Масса и размеры конденсаторной батареи или синхронного компен­сатора могут превосходить массу асинхронного генератора и только при соsφ н =1 (чисто актив­ная нагрузка) размеры СК и масса БК сопоставимы с размером и массой АГ.

Другой, наиболее сложной проблемой является проблема стабилиза­ции напряжения и частоты автономно работающего АГ, имеющего «мяг­кую» внешнюю характеристику.

При использовании асинхронного режима генератора в составе автономной эта проблема ос­ложняется еще и нестабильностью частоты вращения ротора. Возможные и применяемые в настоящее способы регулирования напряжения асинхронном режиме генератора.

При проектировании АГ для оптимизационные расчеты следует вести по максимуму КПД в широком диапазоне изменения частоты враще­ния и нагрузки, а также по минимуму затрат с учетом всей схемы управле­ния и регулирования. Конструкция генераторов должна учитывать клима­тические условия работы ВЭУ, постоянно действующие механические усилия на элементы конструкции и особенно — мощные электродинамиче­ские и термические воздействия при переходных процессах, которые возникают при пусках, перерывах питания, выпадении из синхронизма, ко­ротких замыканиях и других, а также при значительных порывах ветра.

Устройство асинхронной машины,асинхронного генератора

Устройство асинхронной машины с короткозамкнутым ротором по­казано на примере двигателя серии АМ (рис. 5.1).

Основными частями АД являются неподвижный статор 10 и вра­щающийся внутри него ротор, отделенный от статора воздушным зазором. Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали тол­щиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов и обозначают так:

начала - СС2, С 3 ;

концы - С 4, С5, Сб.

Обмотку статора можно соединить звездой (У) или треугольником (Д). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении напри­мер, 127/220 В или 220/380 В. При этом соединению У соответствует включение АД на высшее напряжение.

Сердечник ротора в собранном виде запрессовывается на вал 15 го­рячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмот­ки 13. Обмотка ротора в наиболее распространенных АД представляет со­бой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и бо­лее обмотка ротора выполняется заливкой пазов расплавленным алюми­нием под давлением. Одновременно с обмоткой отливаются и за­мыкающие кольца вместе с вентиляционными крылатками 9. По форме та­кая обмотка напоминает «беличью клетку».

Двигатель с фазным ротором.Асинхронный режим генератор а.

Для специальных асинхронных двигателях обмотка ротора может выполняться по­добно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соеди­нения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.

Вал ротора 15 объединяет все элементы ротора и служит для соеди­нения асинхронного двигателя с исполнительным механизмом.

Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение асинхронного двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышка­ми 1 , имеющими лабиринтовые уплотнения. На корпусе статора устанав­ливается коробка 21с выводами 20 обмотки статора. На корпусе укрепля­ется табличка 17, на которой указываются основные данные АД. На рис.5.1 обозначено также: 6 — посадочное гнездо щита; 7 — кожух; 8 — корпус; 18 — лапа; 19 - вентиляционный канал.