Меню

Составные элементы кожухотрубчатых теплообменников. Кожухотрубный (кожухотрубчатый) теплообменник

Обслуживание и ремонт

Кожухотрубчатые теплообменные аппараты, их типы и конструктивное исполнение

Кожухотрубчатые теплообменники – наиболее распространенная конструкция теплообменной аппаратуры. По ГОСТ 9929 стальные кожухотрубчатые теплообменные аппараты изготовляют следующих типов : ТН – с неподвижными трубными решетками; ТК – с температурным компенсатором на кожухе; ТП – с плавающей головкой; ТУ – с U-образными трубами; ТПК – с плавающей головкой и компенсатором на ней (рисунок 2.49).

Рисунок 2.49 – Типы кожухотрубчатых ТОА

В зависимости от назначения кожухотрубчатые аппараты могут быть теплообменниками, холодильниками, конденсаторами и испарителями; их изготовляют одно- и многоходовыми.

Рисунок 2.50 – Двухходовой горизонтальный теплообменник типа ТН

Двухходовой горизонтальный теплообменник с неподвижными трубными решетками (типа ТН – рисунок 2.50) состоит из цилиндрического сварного кожуха 5, распределительной камеры 11 и двух крышек 4. Трубный пучок (рисунок 2.51) образован трубами 7, закрепленными в двух трубных решетках 3. Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера 1, 12) и межтрубного (штуцера 2, 10) пространств. Перегородка 13 в распределительной камере образует ходы теплоносителя по трубам (рисунок 2.52). Для герметизации узла соединения продольной перегородки с трубной решеткой использована прокладка 14, уложенная в паз решетки 3.

Рисунок 2.51 – Трубный пучок

Рисунок 2.52 – Сдвоенный ТОА Рисунок 2.53 – Трубная решетка

Теплообменники этой группы изготовляют на условное давление 0,6–4,0 МПа, диаметром 159–1200 мм, с поверхностью теплообмена до 960 м 2 ; длина их до 10 м, масса до 20 т. Теплообменники этого типа применяют до температуры 350 °С.

Особенностью аппаратов типа ТН является то, что трубы жестко соединены с трубными решетками (рисунок 2.53), а решетки – с корпусом. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого типа называют еще теплообменниками жесткой конструкции.

Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки 6, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве.

На входе теплообменной среды в межтрубное пространство предусмотрен отбойник 9 – круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изнашивания.

Достоинством аппаратов этого типа является простота конструкции и, следовательно, меньшая стоимость.

Однако им присущи два крупных недостатка. Во-первых, очистка межтрубного пространства подобных аппаратов сложна, поэтому теплообменники такого типа применяются в тех случаях, когда среда, проходящая через межтрубное пространство, является чистой, не агрессивной, т. е. когда нет необходимости в чистке.

Во-вторых, существенное различие между температурами трубок и кожуха в этих аппаратах приводит к большему удлинению трубок по сравнению с кожухом, что обусловливает возникновение температурных напряжений в трубной решетке 5, нарушает плотность вальцовки труб в решетке и ведет к попаданию одной теплообменивающейся среды в другую. Поэтому теплообменники этого типа применяют при разнице температур теплообменивающихся сред, проходящих через трубки и межтрубное пространство не более 50 °C и при сравнительно небольшой длине аппарата.

Кожухотрубчатый аппарат с линзовым компенсатором на корпусе (типа ТК) представлен на рисунке 2.54а. Такие аппараты имеют цилиндрический кожух 1, в котором расположен трубный пучок 2; трубные решетки 3 с развальцованными трубками крепятся к корпусу аппарата. С обоих концов теплообменный аппарат закрыт крышками 4. Аппарат оборудован штуцерами 5 для теплообменивающихся сред; одна среда идет по трубкам, другая проходит через межтрубное пространство. Теплообменные аппараты с температурным компенсатором типа ТК имеют неподвижные трубные решетки и снабжены специальными гибкими элементами 6 (линзами) для компенсации различия в удлинении кожуха и труб, возникающего вследствие различия их температур. Наиболее часто в аппаратах типа ТК используют одно- и многоэлементные линзовые компенсаторы (рисунок 2.55), изготовляемые обкаткой из коротких цилиндрических обечаек. Линзовый элемент, показанный на рисунке 2.55б, сварен из двух полу линз, полученных из листа штамповкой.

Компенсирующая способность линзового компенсатора примерно пропорциональна числу линзовых элементов в нем, однако применять компенсаторы с числом линз более четырех не рекомендуется, так как резко снижается сопротивление кожуха изгибу. Для увеличения компенсирующей способности линзового компенсатора он может быть при сборке кожуха предварительно сжат (если предназначен для работы на растяжение) или растянут (при работе на сжатие).

При установке линзового компенсатора на горизонтальных аппаратах в нижней части каждой линзы сверлят дренажные отверстия с заглушками для слива воды после гидравлических испытаний аппарата.

Теплообменники с U-образными трубками типа ТУ (рисунок 2.56) имеют одну трубную решетку, в которую завальцованы оба конца U-образных трубок 7, что обеспечивает свободное удлинение трубок при изменении их температуры. Недостатком таких аппаратов является трудность чистки внутренней поверхности труб, вследствие которой они используются преимущественно для чистых продуктов.



Рисунок 2.56 – Теплообменный аппарат типа ТУ

Теплообменники этого типа могут быть в горизонтальном и вертикальном исполнении. Их изготовляют диаметром 325–1400 мм с трубами длиной 6–9 м, на условное давление до 6,4 МПа и для рабочих температур до 450 °С. Масса теплообменников до 30 т.

Для обеспечения раздельного ввода и вывода теплоносителя в распределительной камере предусмотрена перегородка (рисунок 2.57).

Теплообменники типа ТУ являются двухходовыми по трубному пространству и одно- или двухходовыми по межтрубному пространству.

Рисунок 2.57 – Трубный пучок с U-образными трубами

В аппаратах типа ТУ обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100 °С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей.

Преимуществом конструкции аппарата типа ТУ является возможность периодического извлечения трубного пучка (см. рисунок 2.57) для очистки наружной поверхности труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.

Поскольку механическая очистка внутренней поверхности труб в аппаратах типа ТУ практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки.

Внутреннюю поверхность труб в этих аппаратах очищают водой, водяным паром, горячими нефтепродуктами или химическими реагентами. Иногда используют гидромеханический способ (подача в трубное пространство потока жидкости содержащей абразивный материал, твердые шары и др.).

Один из наиболее распространенных дефектов кожухотрубчатого теплообменника типа ТУ – нарушение герметичности узла соединения труб с трубной решеткой из-за весьма значительных изгибающих напряжений, возникающих от массы труб и протекающей в них среды. В связи с этим теплообменные аппараты типа ТУ диаметром от 800 мм и более для удобства монтажа и уменьшения изгибающих напряжений в трубном пучке снабжают роликовыми опорами.

К недостаткам теплообменных аппаратов типа ТУ следует отнести относительно плохое заполнение кожуха трубами из-за ограничений, обусловленных изгибом труб. Обычно U-образные трубы изготовляют гибкой труб в холодном или нагретом состоянии.

К существенным недостаткам аппаратов типа ТУ также следует отнести невозможность замены труб (за исключением наружных труб) при выходе их из строя, а также сложность размещения труб, особенно при большом их числе.

Из-за указанных недостатков теплообменные аппараты этого типа не нашли широкого применения.

Теплообменные аппараты с плавающей головкой типа ТП (с подвижной трубной решеткой) являются наиболее распространенным типом поверхностных аппаратов (рисунок 2.58). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса. В аппаратах этой конструкции температурные напряжения могут возникать лишь при существенном различии температур трубок.

Теплообменники этой группы стандартизованы по условным давлениям Р у =1,6 – 6,4 МПа, по диаметрам корпуса 325–1400 мм и поверхностям нагрева 10–1200 м 2 с длиной труб 3–9 м. Масса их достигает 35 т. Теплообменники применяют при температурах до 450 °С.

В теплообменных аппаратах подобного типа трубные пучки сравнительно легко могут быть удалены из корпуса, что облегчает их ремонт, чистку или замену.

Горизонтальный двухходовой конденсатор типа ТП состоит из кожуха 10 и трубного пучка. Левая трубная решетка 1 соединена фланцевым соединением с кожухом и распределительной камерой 2, снабженной перегородкой 4. Камера закрыта плоской крышкой 3. Правая, подвижная, трубная решетка установлена внутри кожуха свободно и образует вместе с присоединенной к ней крышкой 8 «плавающую головку». Со стороны плавающей головки аппарат закрыт крышкой 7. При нагревании и удлинении трубок плавающая головка перемещается внутри кожуха.

Для обеспечения свободного перемещения трубного пучка внутри кожуха в аппаратах диаметром 800 мм и более трубный пучок снабжают опорной платформой 6. Верхний штуцер 9 предназначен для ввода пара и поэтому имеет большое проходное сечение; нижний штуцер 5 предназначен для вывода конденсата и имеет меньшие размеры.

Значительные коэффициенты теплоотдачи при конденсации практически не зависят от режима движения среды. Поперечные перегородки в межтрубном пространстве этого аппарата служат лишь для поддержания труб и придания трубному пучку жесткости.

Хотя в аппаратах типа ТП обеспечивается хорошая компенсация температурных деформаций, эта компенсация не является полной, поскольку различие температурных расширений самих трубок приводит к короблению трубной решетки. В связи с этим в многоходовых теплообменниках типа ТП диаметром более 1000 мм при значительной (выше 100 °С) разности температур входа и выхода среды в трубном пучке, как правило, устанавливают разрезную по диаметру плавающую головку.

Наиболее важный узел теплообменников с плавающей головкой – соединение плавающей трубной решетки с крышкой. Это соединение должно обеспечивать возможность легкого извлечения пучка из кожуха, аппарата, а также минимальный зазор Δ между кожухом и пучком труб. Вариант, показанный на рисунке 2.59а, позволяет извлекать трубный пучок, но зазор Δ получается больше (по крайне мере, чем в теплообменниках типа ТН) на ширину фланца плавающей головки. Крепление по этой схеме наиболее простое; его часто применяют в испарителях с паровым пространством.

Размещение плавающей головки внутри крышки, диаметр которой больше диаметра кожуха, позволяет уменьшить зазор; но при этом усложняется демонтаж аппарата, так как плавающую головку нельзя извлечь из кожуха теплообменника (рисунок 2.59б).

Особенно часто трубные пучки с плавающей головкой используют в испарителях с паровым пространством.

В этих аппаратах должна быть создана большая поверхность зеркала испарения, поэтому диаметр кожуха испарителя значительно превышает диаметр трубного пучка, а перегородки в пучке служат лишь для увеличения его жесткости. В испарителе (рисунок 2.60) уровень жидкости в кожухе 11 поддерживается перегородкой 2. Для обеспечения достаточного объема парового пространства и увеличения поверхности испарения расстояние от уровня жидкости до верха корпуса составляет примерно 30% его диаметра. Трубный пучок 3 расположен в корпусе испарителя на поперечных балках 4.

.

Рисунок 2.60 – Испаритель

Для удобства монтажа трубного пучка в перегородке 2 и левом днище предусмотрен люк 10, через который в аппарат можно завести трос от лебедки. Продукт вводится в испаритель через штуцер 5; для защиты трубного пучка от эрозии над этим штуцером установлен отбойник 6. Пары отводятся через штуцер 9, продукт – через штуцер 1. Теплоноситель подводится в трубный пучок и отводится через штуцеры 7, 8. В таких аппаратах можно устанавливать несколько трубных пучков.

Теплообменные трубы кожухотрубчатых стальных аппаратов – это серийно выпускаемые, промышленностью трубы из углеродистых, коррозионно-стойких сталей и латуни. Диаметр теплообменных труб значительно влияет на скорость теплоносителя, коэффициент теплоотдачи в трубном пространстве и габариты аппарата; чем меньше диаметр труб, тем большее их число можно разместить по окружностям в кожухе данного диаметра. Однако трубы малого диаметра быстрее засоряются при работе с загрязненными теплоносителями, определенные сложности возникают при механической очистке и закреплении таких труб развальцовкой. В связи с этим наиболее употребительны стальные трубы с наружным диаметром 20 и 25 мм. Трубы диаметром 38 и 57 мм применяют при работе с загрязненными или вязкими жидкостями.

С увеличением длины труб и уменьшением диаметра аппарата его стоимость снижается. Наиболее дешевый теплообменный аппарат при длине труб 5–7 м.

Трубы закрепляют в решетках чаще всего развальцовкой (рисунок 2.61а, б), причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее развальцовки (рисунок 2.61б). Кроме того, используют закрепление труб сваркой (рисунок 2.61в), если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой (рису нок 2.61г), применяемой для соединения главным образом медных и латунных труб. Изредка используют соединение труб с решеткой посредством сальников (рисунок 2.61д), допускающих свободное продольное перемещение труб и возможность их быстрой замены. Такое соединение позволяет значительно уменьшить температурную деформацию труб, но является сложным, дорогим и недостаточно надежным.

Наиболее распространенный способ крепления труб в решетке – развальцовка. Трубы вставляют в отверстия решетки с некоторым зазором, а затем обкатывают изнутри специальным инструментом, снабженным роликами (вальцовкой). Для интенсификации теплообмена иногда используют турбулизаторы– элементы, турбулизирующие или разрушающие пограничный слой теплоносителя на наружной поверхности труб. Стремление интенсифицировать теплоотдачу со стороны малоэффективного теплоносителя (газы, вязкие жидкости) привело к разработке различных конструкций оребренных труб. Установлено, что оребрение увеличивает не только теплообменную поверхность, но и коэффициент теплоотдачи от оребренной поверхности к теплоносителю вследствие турбулизации потока ребрами. При этом, однако, надо учитывать возрастание затрат на прокачивание теплоносителя.

Применяют трубы с продольными (рисунок 2.62а) и разрезными (рисунок 2.62б) ребрами, с поперечными ребрами различного профиля (рисунок 2.62в). Оребрение на трубах можно выполнить в виде спиральных ребер (рисунок 2.62г), иголок различной толщины и др.

Рисунок 2.62 – Трубы с оребрением

В кожухотрубчатых теплообменниках устанавливают поперечные и продольные перегородки.

Поперечные перегородки (рисунок 2.63), размещаемые в межтрубном пространстве теплообменников, предназначены для организации движения теплоносителя в направлении, перпендикулярном оси труб, и увеличения скорости теплоносителя в межтрубном пространстве. В обоих случаях возрастает коэффициент теплоотдачи на наружной поверхности труб.

Поперечные перегородки устанавливают и в межтрубном пространстве конденсаторов и испарителей, в которых коэффициент теплоотдачи на наружной поверхности труб на порядок выше коэффициента на их внутренней поверхности. В этом случае перегородки исполняют роль опор трубного пучка, фиксируя трубы на заданном расстоянии одна от другой, а также уменьшают вибрацию труб.

Кожухотрубный теплообменник: технические характеристики и принцип работы

5 (100%) голосов: 3

Сейчас мы с вами рассмотрим технические характеристики и принцип работы кожухотрубных теплообенников, а так же расчёт их параметров и особенности выбора при покупке.

Теплообменники обеспечивают процесс обмена теплом между жидкостями, каждая из которых имеет разную температуру. В настоящее время кожухотрубный теплообменник с большим успехом нашел свое применение в различных отраслях промышленности: химической, нефтяной, газовой. При их изготовлении не возникает сложностей, они надежны и имеют возможность развивать большую поверхность теплообмена в одном аппарате.

Получили такое название благодаря наличию кожуха, скрывающего внутренние трубы.

Устройство и принцип действия

Строение: конструкция из пучков труб, закрепленных в трубных досках (решетках) крышек, кожухов и опор.

Принцип, по которому осуществляет свою деятельность кожухотрубчатый теплообменник довольно прост. Он заключается в движении холодного и горячего теплоносителей по разным каналам. Теплообмен происходит именно между стенками этих каналов.

Принцип работы кожухотрубчатого теплообменника

Преимущества и недостатки

Сегодня кожухотрубные теплообменники пользуются спросом у потребителей и не теряют своих позиций на рынке. Это обусловлено немалым количеством достоинств, которыми обладают эти устройства:

  1. Высокая стойкость к . Это помогает им легко переносить перепады давления и выдерживать серьезные нагрузки.
  2. Не нуждаются в чистой среде. Это значит, что они могут работать с некачественной жидкостью, не прошедшей предварительной очистки, в отличие от множества других видов теплообменников, которые способны работать исключительно в не загрязненных средах.
  3. Высокая эффективность.
  4. Износостойкость.
  5. Долговечность. При должном уходе кожухотрубчатые агрегаты будут работать на протяжении многих лет.
  6. Безопасность использования.
  7. Ремонтопригодность.
  8. Работа в агрессивной среде.

Учитывая вышеизложенные преимущества, можно утверждать об их надежности, высокой эффективности и долговечности.


Кожухотрубные теплообменники в промышленности

Несмотря на большое количество отмеченных преимуществ кожухотрубных теплообменников, данные устройства имеют и ряд недостатков:

  • габаритность и значительный вес: для их размещения необходимо помещение значительных размеров, что не всегда является возможным;
  • высокая металлоемкость : это является основной причиной их высокой цены.

Виды и типы кожухотрубных теплообменников

Классифицируются кожухотрубные теплообменники в зависимости от того, в каком направлении двигается теплоноситель .

Выделяют следующие виды по этому критерию:

  • прямоточный;
  • противоточный;
  • перекресточный.

Количество трубок, находящихся в сердце кожуха, напрямую влияет на то, с какой скоростью будет двигаться вещество, а скорость оказывает непосредственное влияние на коэффициент теплопередачи .

Учитывая данные характеристики, кожухотрубные теплообменники бывают следующих типов:

  • c температурным кожуховым компенсатором;
  • c неподвижными трубками;
  • c плавающей головкой;
  • c U-образными трубками.

Модель с U-образными трубками состоит из одной трубной решетки, в которую и вварены данные элементы. Это позволяет округленной части трубки беспрепятственно опираться на поворотные щитки в корпусе, при этом они имеют возможность линейно расширяться, что позволяет их использовать в больших диапазонах температур. Для чистки U-трубок требуется вынимать всю секцию с ними и использовать специальные химические средства.

Расчет параметров

Долгое время кожухотрубные теплообменники считались самыми компактными среди существующих. Однако появились , которые в три раза компактнее кожухотрубных. К тому же, особенности конструкции подобного теплообменника приводят к возникновению температурных напряжений из-за различия температур между трубами и кожухом. Поэтому при выборе подобного агрегата очень важно сделать его грамотный расчет.

Формула расчёта площади кожухотрубчатого теплообменника

F — площадь поверхности теплообмена;
t ср – средняя разность температур между теплоносителями ;
К – коэффициент теплопередачи;
Q — количество теплоты.

Для проведения теплового расчета кожухотрубного теплообменника необходимы следующие показатели:

  • максимальный расход греющей воды;
  • физические характеристики теплоносителя : вязкость, плотность, теплопроводность, конечная температура, теплоемкость воды при средней температуре.

При осуществлении заказа кожухотрубчатого теплообменника важно знать, какими техническими характеристиками он обладает:

  • давление в трубах и кожухе;
  • диаметр кожуха;
  • исполнение (горизонтальное\вертикальное);
  • тип трубных решеток (подвижные\неподвижные);
  • климатическое исполнение.

Самостоятельно сделать грамотный расчет достаточно сложно. Для этого необходимы знания и глубокое понимание всей сути процесса его работы, поэтому лучшим способом станет обращение к специалистам.

Эксплуатация трубчатого теплообменника

Кожухотрубный теплообменник является устройством, которое характеризуется высокой продолжительностью срока службы и хорошими параметрами эксплуатации. Однако, как и любому другому устройству, для качественной и долговременной работы ему необходимо плановое обслуживание. Поскольку в большинстве случаев кожухотрубные теплообменники работают с жидкостью, которая не прошла предварительную очистку, трубки агрегата рано или поздно засоряются и на них образуется осадок и создается препятствие для свободного протекания рабочей жидкости.

Чтобы эффективность работы оборудования не снижалась и не произошла поломка кожухотрубного агрегата, следует систематически проводить его чистку и промывку.

Благодаря этому он сможет осуществлять качественную работу на протяжении длительного времени. По истечению срока действия прибора, рекомендуется осуществить замену его на новый.

Если возникла потребность в ремонте трубчатого теплообменника, то первоначально необходимо произвести диагностику устройства. Это позволит выявить основные проблемы и определит объем предстоящей работы. Самая слабая его часть — это трубки, и, чаще всего, основным поводом ремонта является повреждение трубчатки.

Для диагностики кожухотрубного теплообменника используется метод гидравлических испытаний.

В сложившейся ситуации необходимо произвести замену трубок, а это трудоемкий процесс. Необходимо заглушить вышедшие из строя элементы, в свою очередь это сокращает площадь теплообменной поверхности. Осуществляя ремонтные работы, обязательно нужно учитывать тот факт, что любое, даже малейшее вмешательство, может стать причиной уменьшения теплообмена.

Теперь вы знаете, как устроен кожухотрубный теплообменник, какие есть у него разновидности и особенности.

Конструкции современных рекуперативных теплообменных аппаратов поверхностного типа непрерывного действия весьма разнообразны. Рассмотрим наиболее характер­ные.

Кожухотрубчатые теплообменники представля­ют собой аппараты, выполненные из пучков труб, скреплен­ных при помощи трубных решеток (досок) и ограниченных кожухами и крышками с патрубками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Перегород­ки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различны­ми жидкостями, между жидкостями и паром, между жидкостя­ми и газами. Типовые конструкции кожухотрубчатых теплооб­менников применяются в случаях, когда требуется большая поверхность теплообмена.

При нагреве жидкости паром в большинстве случаев пар вво­дится в межтрубное пространство, а нагреваемая жидкость проте­кает по трубкам. В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2... 3 раза больше проходно­го сечения внутри труб. Поэтому при одинаковых расходах тепло­носителей, имеющих одинаковое агрегатное состояние, скорости теплоносителя в межтрубном пространстве более низкие и коэф­фициенты теплоотдачи на поверхности межтрубного простран­ства невысоки, что снижает коэффициент теплопередачи в аппа­рате. На рис. 4.5 показаны различные типы кожухотрубчатых теп­лообменников.

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор современной паровой тур­бины мощностью 300 МВт имеет более 20 тыс. труб с общей по­верхностью теплообмена около 15 тыс. м 2 .

Корпус (кожух) кожухотрубчатого теплообменника представ­ляет собой цилиндр, сваренный из одного или нескольких сталь­ных листов. Кожухи различаются, главным образом, способом со­единения с трубной решеткой и крышками. Толщина стенки ко­жуха определяется максимальным давлением рабочей среды и ди­аметром аппарата, но не меньше 4 мм. К цилиндрическим кром­кам кожуха привариваются фланцы для соединения с крышками или днищами. На наружной поверхности кожуха привариваются патрубки и опоры аппарата.

Трубки кожухотрубчатых аппаратов изготовляют прямыми или изогнутыми (U-образными) диаметром от 12 до 57 мм.

Материал трубок выбирается в зависимости от среды, омыва­ющей ее поверхность. Применяются трубки из стали, латуни и специальных сплавов.

Трубные решетки служат для закрепления в них труб при по­мощи развальцовки, заварки, запайки или сальниковых соедине­ний. Трубные решетки зажимаются болтами между фланцами ко­жуха и крышки или привариваются к кожуху, либо соединяются болтами только с фланцами свободной камеры (см. рис. 4.5).


Рис. 4.5. Типы кожухотрубчатых теплообменников:

а - одноходовый; б - многоходовый; в - пленочный; г - с линзовым компен­сатором; д - с плавающей головкой закрытого типа; е - с плавающей головкой открытого типа; ж - с сальниковым компенсатором; з - с U-образными труб­ками; 1 - кожух; 2 - выходная камера; 3 - трубная решетка; 4 - трубы; 5 - входная камера; 6 - продольная перегородка; 7 - камера; 8 - перегородки в камере; 9 - линзовый компенсатор; 10 - плавающая головка; 11 –сальник; 12 - U-образные трубы; I, II - теплоносители

Крышки кожухотрубчатых аппаратов имеют форму плоских плит, конусов, сфер, а чаще всего выпуклых или вогнутых эллип­сов.

Секционные теплообменники (рис. 4.6) представля­ют собой разновидность трубчатых аппаратов и состоят из несколь­ких последовательно соединенных секций, каждая из которых пред­ставляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.

В секционных теплообменниках при одинаковых расходах жид­костей скорости движения теплоносителей в трубах и межтруб­ном пространстве почти равновелики, что обеспечивает повы­шенные коэффициенты теплопередачи по сравнению с обыч­ными трубчатыми теплообменниками. Простейшим из этого типа является теплообменник «труба в трубе» (в наружную трубу встав­лена труба меньшего диаметра). Все элементы аппарата соедине­ны сваркой.

Рис. 4.6. Секционные теплообменники:

а - водяной подогреватель теплосети; б - типа «труба в трубе»; 1 - линзовый компенсатор; 2 - трубки; 3 - трубная решетка с фланцевым соединением с кожухом; 4 - «калач»; 5 - соединительные патрубки

Недостатками секционных теплообменников являются: высо­кая стоимость единицы поверхности нагрева, так как деление ее на секции вызывает увеличение количества наиболее дорогих эле­ментов аппарата - трубных решеток, фланцевых соединений, переходных камер, компенсаторов и т.д.; значительные гидрав­лические сопротивления вследствие различных поворотов и пере­ходов вызывают повышенный расход электроэнергии на привод прокачивающего теплоноситель насоса.

Кожухи серийных секционных теплообменников изготовляют из труб длиной до 4 м, внутренним диаметром от 50 до 305 мм. Число труб в секции составляет от 4 до 151, поверхность нагрева от 0,75 до 26 м 2 , трубы латунные диаметром 16/14 мм. Отношение поверхно­сти нагрева к объему теплообменника достигает 80 м 2 /м 3 , а удель­ный конструкционный вес составляет 50...80 кг/м 2 поверхности нагрева.

Спиральные теплообменники (рис. 4.7) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлически­ми листами, которые служат поверхностью теплообмена. Внут­ренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования рас­стояния между спиралями приваривают бобышки. С торцов спи­рали закрывают крышками и стягивают болтами.

Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикаль­ные спиральные теплообменники. Такие теплообменники приме­няют в качестве конденсаторов и паровых подогревателей для жид­кости.

Рис. 4.7. Типы спиральных теплообменников:

а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители

К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объ­ема, чем у многоходовых трубчатых теплообменников) при оди­наковых коэффициентах теплопередачи и меньшее гидравличес­кое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под из­быточным давлении не свыше 1,0 МПа.

Пластинчатые теплообменники имеют плоские по­верхности теплообмена. Обычно такие теплообменники применя­ют для теплоносителей, коэффициенты теплоотдачи которых оди­наковы.

Недостатками изготовлявшихся до недавнего времени пластин­чатых теплообменников являлись малая герметичность и незначи­тельные перепады давлений между теплоносителями.

В последнее время изготовляют компактные разборные плас­тинчатые теплообменники, состоящие из штампованных метал­лических листов с внешними выступами, расположенными в ко­ридорном или шахматном порядке. Такие конструкции приме­няются для теплообмена между жидкостями и газами и работают при перепадах давлений до 12 МПа. На рис. 4.8 представлено не­сколько конструкций теплообменников такого типа. Благодаря незначительному расстоянию между пластинами (6...8 мм) такие теплообменники весьма компактны. Удельная поверхность нагре­ва F/V составляет 200...300 м 2 /м 3 . Поэтому пластинчатые теплооб­менники в ряде случаев вытесняют трубчатые и спиральные.

Но такой конструкции присущи следующие недостат­ки: трудность чистки внутри каналов, ремонта, частичной заме­ны поверхности теплообмена, а также невозможность изготовле­ния пластинчатых теплообменников из чугуна и хрупких матери­алов и длительная эксплуатация.

В настоящее время в системах теплоснабжения жилищно-ком­мунальных хозяйств и ряда промышленных предприятий в каче­стве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 4.8) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоя­тельств и преимуществ:

1. Коэффициент теплопередачи в пластинчатых теплообменни­ках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков тепло­носителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.

Рис. 4.8. Пластинчатый водоводяной теплообменник «Теплотекс»:

а - общий вид; б - схема движения теплоносителей

2. Пластинчатые теплообменники имеют малую металлоем­кость, очень компактны, их можно установить в небольшом по­мещении.

3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопро­водов.

4. В пластинчатом теплообменнике можно легко и быстро заме­нить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка.

Секционные кожухотрубные теплообменники трудно точно рас­считать на требуемую тепловую производительность и допусти­мые потери напора, так как поверхность одной секции велика и Достигает 28 м 2 (при D y = 300 мм).

Пластинчатые теплообменники набираются из отдельных пла­стин, поверхность нагрева которых, как правило, не превышает одного метра. Это обстоятельство в сочетании с оптимально выб­ранным типом пластины позволяет точно без лишнего запаса выб­рать теплопередающую поверхность теплообменника.

По своим техническим характеристикам теплообменники «Теплотекс» являются разборными и одноходовыми; материал пласти­ны - сталь ALSL 316; толщина пластины - 0,5 ...0,6 мм; матерная прокладки - резина EPDM; максимальная рабочая температуря теплоносителя - 150 °С; рабочее давление - 1... 2,5 МПа; расходы воды в зависимости от типа теплообменника от 2 до 100 кг/с; поверхность - от 1,5 до 373 м 2 .

Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоно­сителей значительно ниже, чем для второго. Поверхность теп­лообмена со стороны теплоносителя с низким значением α уве­личивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 4.9). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.

Рис. 4.9. Типы ребристых теплообмен­ников:

а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спираль­ным оребрением; г - чугунная труба с внут­ренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусто­ронним игольчатым оребрением; ж - про­волочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - много­ребристая трубка

В условиях рыночной экономики можно причислить к основным факторам, оказывающим непосредственное влияние на определение стратегии технологического переоснащения и технического перевооружения любого предприятия. Надежность, экономичность, доступность гарантийного и сервисного обслуживания сегодня являются базовыми элементами, на которых зиждется экономическая успешность и процветание всех участников экономических отношений.

При закупке новых видов оборудования любая организация руководствуется в первую очередь вышеуказанными критериями. Высококачественные кожухотрубные теплообменники как раз являются таким эффективным и экономичным оборудованием. Сегодня актуальность этих аппаратов для предприятий любого профиля и направленности даже не подвергается сомнениям. В нынешнее время теплообменники кожухотрубные наиболее широкое применение нашли в нефтехимической, химической и пищевой промышленности, в жилищно-коммунальном хозяйстве и энергетической отрасли.

Наглядность, яркость таких новейших технико-экономических решений, имеющих немало преимуществ по сравнению с морально устаревшими типами оборудования, в последнее время привлекают все больше предприятий различных отраслей народного хозяйства. Ведь кожухотрубные теплообменники позволяют значительно снизить расход теплоресурсов, что позитивно сказывается на себестоимости продукции и, следовательно, на ее конечной цене. А это необычайно важно в современных экономических реалиях с их условиями жесткой конкуренции.

Кожухотрубные теплообменники представляют собой аппараты, где происходит процесс теплообмена между различными рабочими средами (вне зависимости от их технологической спецификации и энергетического предназначения). Как правило, такие устройства выполняют функции подогревателей, испарителей, конденсаторов, пастеризаторов, деаэраторов, экономайзеров и др.

Кожухотрубные теплообменники могут иметь чрезвычайно многообразное технологическое назначение и использоваться в производстве самого различного профиля. Спектр их применения сегодня необычайно широк. Теплообменник кожухотрубный, основными конструкционными элементами которого являются пучки труб с решетками, корпус, патрубки и крышки, может использоваться в качестве агрегата, в котором передача тепловой энергии является основным технологическим процессом, или как реактор, в котором теплообмен носит исключительно вспомогательный характер.

Принцип работы кожухотрубных теплообменников базируется на процессе теплопередачи от среды, движущейся с высокой скоростью внутри труб небольшого диаметра, к среде, циркулирующей в кожухе. С целью увеличения интенсификации процесса теплообмена такие агрегаты часто оснащаются специальными перегородками в трубном и межтрубном пространствах.

Кожухотрубные теплообменники могут иметь вертикальную, горизонтальную или наклонную пространственную ориентацию (в зависимости от требований и в соответствии с удобством монтажа). Такие агрегаты являются полноценной альтернативой пластинчатым теплообменникам, в сравнении с которыми хоть и имеют более низкий КПД передачи энергии, но зато обладают относительной простотой конструкции, а также низкой стоимостью, что может быть решающим аргументом при выборе подобного оборудования.