Меню

Доклад: Взаимодействие тел и законы Ньютона. Взаимодействие (в физике)

Монтаж крыши и кровли

Взаимодействие тел. Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом . При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.

Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя (), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения (
), включающего покой как частный случай.

Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными.

Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.

Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла). В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.

Законы Ньютона как основа классической механики. Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики , т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.

Первый закон Ньютона постулирует существование инерциальных систем отсчета.

Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе , физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела :

(1) F= ma

Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).

К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).

Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.

Типы фундаментальных взаимодействий. Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий , при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил). Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял,что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).

В настоящее время принят набор из четырех типов фундаментальных взаимодействий :гравитационные, электромагнитные, сильное и слабые ядерные . Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

В настоящее время стали весьма популярны рассуждения о биополе , при помощи которого “объясняется” ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин. Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания. Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.

Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a (t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:

(2) F=F (r,v, t) ,

т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка :

(3)
,

(4)

В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное . Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.

Детерминизм Лапласа . Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа . При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики, , позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени.

Все тела во Вселенной притягиваются друг к другу. Это притяжение называют гравитационным взаимодействием.

Очень часто при взаимодействии тел не указывают, какое именно тело действует на тело, которое мы рассматриваем. В таком случае говорят, что на тело действует сила. В результате действия силы тело изменяет свою скорость.

Сила — это физическая величина, количественно характеризующая действие одного тела на другое. В Системе Интернациональной сила измеряется в ньютонах. Кроме числового значения, сила и направление. Такие величины, которые, кроме числового значения, имеют направление, называют векторными величинами. Сила — векторная величина.

Примером гравитационных сил сила притяжения тела к Земле. Закон, описывающий взаимодействие тел во Вселенной, сформулировал великий английский ученый Исаак Ньютон. Этот закон утверждает, что значение гравитационной силы зависит от массы тел, которые взаимодействуют, и расстояния между ними.

Для людей важнейшее значение имеет сила тяжести. Это сила, с которой Земля притягивает к себе все тела. Сила тяжести всегда направлена к центру Земли. На опыте установлено, что сила притяжения прямо пропорциональна массе тела.

Существует гипотеза, что ранее на Луне, как и на Земле, была атмосфера. Но благодаря тому, что сила тяжести на Земле больше, чем на Луне, весь воздух Луны Земля «перетянула» к себе.

Кроме гравитационного, существуют другие виды взаимодействия: электрическая и магнитная. В повседневной жизни мы часто можем наблюдать электрические явления. Еще древнегреческие ученые заметили, что янтарь, потертый о мех, приобретает свойства притягивать мелкие предметы. С греческого янтарь — электрон, так и явления называют электрическими. Примером электрической взаимодействия является привлечение небольших кусочков бумаги к наэлектризованной тела,

Явление, в результате которого тела приобретают свойства притягивать другие предметы, называют электризацией тел. Примером магнитного взаимодействия является взаимодействие магнита с металлическими предметами.

Тела, которые длительное время сохраняют намагниченность, называются постоянными магнитами или просто магнитами.

Первой крупной работой, посвященной исследованию магнитных явлений, была работа Уильяма Гилберта «О магните, магнитных тела и о большом магните — Земле». В этой работе Гилберт сформулировал основные свойства магнитов:

— Различные части магнита по-разному притягивают железные предметы; сильнее притягивают полюсы магнита (те места магнита, где выявляются наиболее сильные магнитные действия, называются полюсами магнитов);

— Магнит всегда имеет два полюса: северный и южный; нельзя получить магнит с одним полюсом;

— Разноименные полюса магнитов притягиваются, а одноименные — отталкиваются;

— Подвешенный на нитке магнит размещается так, что указывает на север и на юг;

— Земля является гигантским магнитом.

Энергия

Механическая работа выполняется тогда, когда на тело действует сила и тело под действием этой силы движется. Для неподвижного тела механическая работа не выполняется, но есть возможность ее выполнения. Физическую величину, которая характеризует способность тела выполнять работу, называют энергией тела. Чем большую работу может выполнить тело, тем большую энергию она имеет. Существует много видов энергии: механическая, электрическая, тепловая, химическая, звуковая, световая. В природе, технике и быту можно наблюдать превращение одного вида энергии в другой. Энергия может и передаваться от одного тела к другому.

Энергия из ничего не возникает и не исчезает бесследно, она только превращается из одного вида в другой или передается от одного тела другому. Это и есть закон сохранения энергии, который открыл немецкий ученый Майер и английский ученый Джоуль.

Майер сформулировал закон сохранения энергии с позиции врача-естествоиспытателя. Его внимание привлекли к себе явления, происходящие в организме человека. Ученый заметил разницу цвета венозной крови людей в странах умеренных и тропических поясов и пришел к выводу, что эта разница объясняется объемами потребления кислорода. Чем ближе к экватору, тем кровь человека становится более красной.

Какие основные особенности взаимодействия тел?


Если на тело не действуют другие тела, то оно либо находится в покое, либо движется прямолинейно и равномерно. Взаимодействие тел приводит
к ускорению тел. Для двух данных взаимодействующих тел отношение модулей их
ускорений всегда одно и то же.

Простые наблюдения и опыты, например с тележками (рис. 3), приводят к следующим качественным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной; б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или чем ближе два одноименных заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила. Сила - причина ускорения тел (в инерциальной системе отсчета). Сила - это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.

Единица силы - ньютон (Н). 1 ньютон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с2 в направлении действия этой силы, если другие тела на него не действуют. Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу:

Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинамике: сила Ампера -, сила Лоренца -, кулоновская сила - и гравитационные си-лы: закон всемирного тяготения -. Такие механические силы, как сила упругости и сила трения, возникают в результате электромагнитного взаимодействия частиц вещества. Для их расчета необходимо использовать формулы: (закон Гука), - сила трения.

На основании обобщения огромного числа опытных фактов и наблюдений были сформулированы законы динамики. Такое обобщение было выполнено Исааком Ньютоном.

Первый закон Ньютона постулирует существова-ние инерционных систем отсчета и дает признак, пользуясь которым такие системы можно выделить из всего разнообразия систем отсчета: существуют такие системы отсчета, относительно которых посту¬пательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются).

Второй закон Ньютона отражает фундаменталь¬ное свойство материального мира, в соответствии с которым относительно инерциальных систем отсчета ускорение тел возникает только под действием сил. Этот закон формулируется следующим образом. Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, дей-ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую¬щая сила: Часто основной закон динамики записывают в виде, что дает универсальный способ определения любых сил на основе кинематических методов измерения ускорения. Третий закон Ньютона является обобщением громадного количества опытных фактов, показывающих, что силы - результат взаимодействия тел. Он формулируется следующим образом: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Распространенные ошибки1. Многие абитуриенты не понимают, какая связь существует между законами Ньютона. Приходилось слышать такие ответы, в которых говорилось, что будто бы первый закон Ньютона является следствием второго закона Ньютона. Это не верно. Первый закон Ньютона (закон инерции) - важный и самостоятельный закон. Он утверждает, что если на тело не действуют другие тела, то оно находится в состоянии покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета. Из этого закона следует, что причиной изменения скоростя является сила.

В чем причина движения тел? Ответ на этот вопрос дает раздел механики, называемый динамикой .
Как можно изменить скорость тела, заставить его двигаться быстрее или медленнее? Только при взаимодействии с другими телами. При взаимодействии тела могут поменять не только скорость, но и направление движения и деформироваться, изменив при этом форму и объем. В динамике для количественной меры взаимодействия тел друг на друга введена величина названная силой . А изменение скорости за время действия силы характеризуется ускорением. Сила есть причина ускорения.

Понятие силы

Сила – это векторная физическая величина, характеризующая действие одного тела на другое, проявляющееся в деформации тела или изменении его движения относительно других тел.

Сила обозначается буквой F. За единицу измерения в системе СИ принят Ньютон (Н), который равен силе, под действием которой тело массой в один килограмм получает ускорение в один метр на секунду в квадрате. Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения.
Для измерения сил служит специальный прибор называемый динамометром .

Сколько же сил в природе?

Силы можно разделить на два типа:

  1. Действуют при непосредственном взаимодействии, контактные (упругие силы, силы трения);
  2. Действуют на расстоянии, дальнодействующие (сила притяжения, сила тяжести, магнитные, электрические).

При непосредственном взаимодействии, например выстрел из игрушечного пистолета, тела испытывают изменение формы и объема по сравнению с первоначальным состоянием, то есть деформацию сжатия, растяжения, изгиба. Сжата пружина пистолета перед выстрелом, деформируется пулька при ударе о пружину. В данном случае силы действуют в момент деформации и исчезают вместе с ней. Силы такие называют упругими. Силы трения возникают при непосредственном взаимодействии тел, когда они катятся, скользят друг относительно друга.

Примером сил, действующих на расстоянии, может служить камень, брошенный вверх, вследствие притяжения он упадет на Землю, приливы и отливы, возникающие на океанских побережьях. С увеличением расстояния такие силы убывают.
В зависимости от физической природы взаимодействия силы можно разделить на четыре группы:

  • слабые;
  • сильные;
  • гравитационные;
  • электромагнитные.

Со всеми типами этих сил мы встречаемся в природе.
Гравитационные или силы всемирного тяготения являются самыми универсальными, все, что имеет массу способно испытывать эти взаимодействия. Они вездесущи и всепроникающие, но очень слабы, поэтому мы их не замечаем, особенно на огромных расстояниях. Гравитационные силы дальнодействующие, связывают все тела во Вселенной.

Электромагнитные взаимодействия возникают между заряженными телами или частицами, посредством действия электромагнитного поля. Электромагнитные силы позволяют нам видеть предметы, так как свет это одна из форм электромагнитных взаимодействий.

Слабые и сильные взаимодействия стали известны благодаря изучению строения атома и атомного ядра. Сильные взаимодействия возникают между частицами в ядрах. Слабые характеризуют взаимные превращения друг в друга элементарных частиц, действуют при реакциях термоядерного синтеза и радиоактивных распадах ядер.

Если на тело действует несколько сил?

При действии нескольких сил на тело одновременно заменяют это действие одной силой, равной их геометрической сумме. Полученную в этом случае силу называют равнодействующей. Она сообщает телу то же ускорение, что и одновременно действующие на тело силы. Это так называемый принцип суперпозиции сил.