Меню

Где применяются спектры. Спектральный анализ, его виды и области применения

Монтаж крыши и кровли


Спектральный анализ , метод качественного и количественного определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный спектральный анализ , задачи которых состоят в определении соответственно элементного и молекулярного состава вещества. Эмиссионный спектральный анализ проводят по спектрам испускания атомов, ионов или молекул, возбужденных различными способами, абсорбционный спектральный анализ - по спектрам поглощения электромагнитного излучения анализируемыми объектами (см. Абсорбционная спектроскопия ). В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн и других факторов ход анализа, аппаратура, способы измерения спектров и метрологические характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоятельных методов (см., в частности, спектроскопия отражения , ультрафиолетовая спектроскопия, ).

Часто под спектральным анализом понимают только атомно-эмиссионный спектральный анализ (АЭСА) - метод элементного анализа, основанный на изучении спектров испускания свободных атомов и ионов в газовой фазе в области длин волн 150-800 нм (см. ).

Пробу исследуемого вещества вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристическое излучение, которое поступает в регистрирующее устройство спектрального прибора.

При качественном спектральном анализе спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количественном анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналитического сигнала (плотность почернения или оптическая плотность аналитической линии на фотопластинке; световой поток на фотоэлектрический приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси веществ, растворы, в т.ч. и , выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; например, сравнивают спектральные линии определяемого элемента и так называемого элемента сравнения, близкого по химическим и физическим свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность спектрального анализа зависят главным образом от физических характеристик источников излучения (возбуждения спектров) - температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т.д. Для решения конкретной аналитической задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью различных приемов - использование инертной атмосферы, наложение магнитного поля, введение специальных веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы математического планирования экспериментов.

При анализе твердых веществ наиболее часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструированных стабилизирующих генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью которых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого вещества, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физическими и химическими свойствами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому веществу реагентов, способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соединений (фторидов, хлоридов, сульфидов и др.) определяемых элементов. Для анализа геологических проб в виде порошков широко применяют способ просыпки или вдувания проб в зону разряда угольной дуги.

При анализе металлургических проб наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом катоде). Разработаны комбинированные автоматизированные источники, в которых для испарения или распыления используют лампы тлеющего разряда или электротермические анализаторы, а для получения спектров, например, - высокочастотные плазматроны. При этом удается оптимизировать условия испарения и возбуждения определяемых элементов.

При анализе жидких проб (растворов) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной атмосфере, а также при пламенно-фотометрическом анализе (см. ). Для стабилизации температуры плазмы разряда на оптимальном уровне вводят добавки легкоионизируемых веществ, например щелочных металлов. Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналитического сигнала к шуму и, таким образом, достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения пробы вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относительное стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять спектральный анализ вместо точных, но более трудоемких и длительных химических методов анализа.

Для анализа газовых смесей необходимы специальные вакуумные установки; спектры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием газовой хроматографии эти методы применяют редко.

Рис. 1. ВЧ-плазматрон: 1-факел отходящих газов; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагревательный индуктор; 5-вход охлаждающего газа (азот, аргон); 6-вход плазмообразующего газа (аргон); 7-вход распыленной пробы (несущий газ - аргон).

При анализе веществ высокой чистоты, когда требуется определять элементы, содержание которых меньше 10 -5 %, а также при анализе токсичных и радиоактивных веществ пробы предварительно обрабатывают; например, частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем раствора или вносят в меньшую массу более удобного для анализа вещества. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. Спектральный анализ с использованием перечисленных химических способов концентрирования пробы, как правило, называют химико-спектральным анализом. Дополнительные операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относительное стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфической областью спектрального анализа является микроспектральный (локальный) анализ. При этом микрообъем вещества (глубина кратера от десятков мкм до нескольких мкм) испаряют обычно лазерным импульсом, действующим на участок поверхности образца диаметром несколько десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании минералов, в металловедении.

Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия - для разделения спектральных линий с близкими длинами волн при анализе веществ с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракционные решетки (плоские, вогнутые, нарезные, голографические, профилированные), имеющие от нескольких сотен до нескольких тысяч штрихов на миллиметр, значительно реже - кварцевые или стеклянные призмы.

Спектрографы (рис. 2), регистрирующие спектры на специальных фотопластинках или (реже) на фотопленках, предпочтительнее при качественном спектральном анализе, т.к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количественного анализа вследствие сравнительной дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на фотопластинках измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматический режим измерений, обработку их результатов и выдачу конечных результатов анализа.


Рис.2. Оптическая схема спектрографа: 1-входная щель; 2-поворотное зеркало; 3-сферическое зеркало; 4-дифракционная решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.


Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракционные решетки; 3-выходные щели; 4-фото-электронный умножитель; 5-входные щели; 6-штативы с источниками света; 7-генераторы искрового и дугового разрядов; 8-электронно-регистрирующее устройство; 9-управляющий вычислительный комплекс.

В спектрометрах осуществляется фотоэлектрическая регистрация аналитических сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматической обработкой данных на ЭВМ. Фотоэлектрические многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналитические линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиболее интенсивные аналитические линии которых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значительной мере процедурами подготовки исходного вещества к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиболее длительных этапов - растворения, приведения растворов к стандартному составу, окисления металлов, растирания и смешения порошков, отбора проб заданной массы. Во многих случаях многоэлементный спектральный анализ выполняется в течение нескольких минут, например: при анализе растворов с использованием автоматизированных фотоэлектрических спектрометров с ВЧ плазматронами или при анализе металлов в процессе плавки с автоматической подачей проб в источник излучения.

Одним из основных методов анализа химического состава вещества является спектральный анализ. Анализ его состава производится, на основании изучения его спектра. Спектральный анализ — используется в различных исследованиях. С его помощью открыт комплекс химических элементов: Не, Ga, Cs. в атмосфере Солнца. А также Rb, Inи XI, определён состав Солнца и большинства других небесных тел.

Отрасли применения

Спектральная экспертиза, распространена в:

  1. Металлургии;
  2. Геологии;
  3. Химии;
  4. Минералогии;
  5. Астрофизике;
  6. Биологии;
  7. медицине и др.

Позволяет находить в изучаемых объектах малейшие количества устанавливаемого вещества (до 10 — MS) Спектральный анализ делится на качественный и количественный.

Методы

Способ установления химического состава вещества на основе спектра – это и есть основа спектрального анализа. Линейчатые спектры обладают неповторимой индивидуальностью, так же как и отпечатки пальцев у людей, или же узор снежинок. Неповторимость рисунков на коже пальца – это большое преимущество для розыска преступника. Поэтому благодаря особенности каждого спектра имеется — возможность установить химическое содержание тела, проведя анализ химического состава вещества. Даже если его масса элемента не превышает 10 — 10 г, с помощью спектрального анализа его можно обнаружить в составе сложного вещества. Это достаточно чувствительный метод.

Эмиссионный спектральный анализ

Эмиссионный спектральный анализ — это ряд методов установления химического состава вещества по его эмиссионному спектру. В основу способа установления химического состава вещества – спектральной экспертизы, положены закономерности в спектрах испускания и спектрах поглощения. Данный метод позволяет выявить миллионные доли миллиграмма вещества.

Существуют методы качественной и количественной экспертизы, в соответствии с установлением аналитической химии как предмета, целью которой является формирование способов установления химического состава вещества. Методы идентификации вещества, становятся крайне важными в пределах качественного органического анализа.

По линейчатому спектру паров какого-либо из веществ есть возможность установить, какие химические элементы содержаться в его составе, т.к. любой химический элемент имеет личный специфический спектр излучения. Подобный метод установления химического состава вещества именуется качественным спектральным анализом.

Рентгеноспектральный анализ

Существует еще один метод определения химического вещества, называемый рентгеноспектральным анализом. Рентгеноспектральный анализ основан на активации атомов вещества при облучении его рентгеновскими лучами, процесс называется вторичным или флуоресцентным. А также возможна активация при облучении электронами больших энергий, в этом случае процесс именуют прямым возбуждением. В результате перемещения электронов в более глубоких внутренних электронных слоях появляются линии рентгеновского излучения.

Формула Вульфа — Брэггов позволяет устанавливать длины волн, в составе рентгеновского излучения, при применении кристалла популярной структуры с известным расстоянием d. Это и есть основание метода определения. Изучаемое вещество бомбят стремительными электронами. Помещают его, к примеру, на анод разборной рентгеновской трубки, впоследствии чего оно источает характерные рентгеновские лучи, которые падают на кристалл известной структуры. Измеряют углы и рассчитывают по формуле соответствующие длины волн, после фотографирования возникающей при этом дифракционной картине.

Приемы

В настоящее время все методы химического анализа основаны на двух приемах. Либо на: физическом приеме, либо на химическом приеме сравнения устанавливаемой концентрации с ее единицей измерения:

Физический

Физический приём основан на способе соотнесения с эталоном единицы величины количества компонента путем измерения его физического свойства, который зависит от его содержания в пробе вещества. Пробно определяют функциональную зависимость «Насыщенность свойства – содержание компонента в пробе» способом градуировки средства измерения данного физического свойства по устанавливаемому компоненту. Из градуировочного графика получают количественные отношения, построенного в координатах: «насыщенность физического свойства — концентрация устанавливаемого компонента».

Химический

Химический приём используется в способе соотнесения с эталоном единицы величины количества компонента. Тут используются законы сохранения количества или массы компонента при химических взаимодействиях. На химических свойствах химических соединений, основаны химические взаимодействия. В пробе вещества осуществляют химическую реакцию, отвечающую поставленным требованиям, для определения искомого компонента, и производится замер объёма или массы, принимающих участие в конкретной химической реакции компонентов. Получают количественные отношения, далее записывается количества эквивалентов компонента для данной химической реакции или закон сохранения массы.

Приборы

Приборами для анализа физико-химического состава вещества являются:

  1. Газоанализаторы;
  2. Сигнализаторы предельно допустимых и до взрывоопасных концентраций паров и газов;
  3. Концентратомеры жидких растворов;
  4. Плотномеры;
  5. Солемеры;
  6. Влагомеры и др. схожие по назначению и комплектности приборы.

Со временем все более увеличивается круг анализируемых объектов и повышается скорость и правильность анализа. Одним из главнейших приборных методов установления атомного химического состава вещества становится спектральный анализ.

С каждым годом все больше появляются комплексы приборов, для количественного спектрального анализа. А также выпускают наиболее усовершенствованные виды аппаратуры и способы регистрации спектра. Организуются спектральные лаборатории первоначально в машиностроительной, металлургической, а затем и других областях промышленности. Со временем вырастает скорость и верность анализа. К тому же расширяется область анализируемых объектов. Одним из основных приборных методов установления атомного химического состава вещества становится спектральный анализ.

Задумывались ли вы над тем, откуда мы знаем о свойствах далёких небесных тел?

Наверняка вам известно о том, что таким знаниям мы обязаны спектральному анализу. Однако нередко мы недооцениваем вклад этого метода в само понимание . Появления спектрального анализа перевернуло многие устоявшиеся парадигмы о строении и свойствах нашего мира.

Благодаря спектральному анализу мы имеем представление о масштабе и величии космоса. Благодаря нему мы перестали ограничивать Вселенную Млечным Путём. Спектральный анализ открыл нам великое разнообразие звезд, рассказал об их рождении, эволюции и смерти. Этот метод лежит в основе практически всех современных и даже грядущих астрономических открытий.

Узнать о недосягаемом

Ещё два столетия назад было принято считать, что химических состав планет и звезд навсегда останется для нас загадкой. Ведь в представлении тех лет космические объекты всегда останутся для нас недоступными. Следовательно, мы никогда не получим пробного образца какой-либо звезды или планеты и никогда не узнаем об их составе. Открытие спектрального анализа полностью опровергло это заблуждение.

Спектральный анализ позволяет дистанционно узнать о многих свойствах далёких объектов. Естественно, без такого метода современная практическая астрономия просто бессмысленна.

Линии на радуге

Темные линии на спектре Солнца заметил ещё в 1802 году изобретатель Волластон. Однако сам первооткрыватель особо не зациклился на этих линиях. Их обширное исследование и классификацию произвел в 1814 году Фраунгофер. В ходе своих опытов он заметил, что своим набором линий обладает Солнце, Сириус, Венера и искусственные источники света. Это означало, что эти линии зависят исключительно от источника света. На них не влияет земная атмосфера или свойства оптического прибора.

Природу этих линий в 1859 открыл немецкий физик Кирхгоф вместе с химиком Робертом Бунзеном. Они установили связь между линиями в спектре Солнца и линиями излучения паров различных веществ. Так они сделали революционное открытие о том, что каждый химический элемент обладает своим набором спектральных линий. Следовательно, по излучению любого объекта можно узнать о его составе. Так был рождён спектральный анализ.

В ходе дальнейших десятилетий благодаря спектральному анализу были открыты многие химические элементы. В их число входит гелий, который был сначала обнаружен на Солнце, за что и получил своё название. Поэтому изначально он считался исключительно солнечным газом, пока через три десятилетия не был обнаружен на Земле.

Три вида спектра

Чем же объясняется такое поведение спектра? Ответ кроется в квантовой природе излучения. Как известно, при поглощении атомом электромагнитной энергии, его внешний электрон переходит на более высокий энергетический уровень. Аналогично при излучении – на более низкий. Каждый атом имеет свою разницу энергетических уровней. Отсюда и уникальная частота поглощения и излучения для каждого химического элемента.

Именно на этих частотах излучает и испускает газ. В тоже время твёрдые и жидкие тела при нагревании испускают полный спектр, независящий от их химического состава. Поэтому получаемый спектр подразделяется на три типа: непрерывный, линейчатый спектр и спектр поглощения. Соответственно, непрерывный спектр излучают твёрдые и жидкие тела, линейчатый – газы. Спектр поглощения наблюдается тогда, когда непрерывное излучение поглощается газом. Другими словами, разноцветные линии на тёмном фоне линейчатого спектра будут соответствовать тёмным линиям на разноцветном фоне спектра поглощения.

Именно спектр поглощения наблюдается у Солнца, тогда как нагретые газы испускают излучение с линейчатым спектром. Это объясняется тем, что фотосфера Солнца хоть и является газом, она не прозрачна для оптического спектра. Похожая картина наблюдается у других звёзд. Что интересно, во время полного солнечного затмения спектр Солнца становится линейчатым. Ведь в таком случае он исходит от прозрачных внешних слоёв её .

Принципы спектроскопии

Оптический спектральный анализ относительно прост в техническом исполнении. В основе его работы лежит разложение излучения исследуемого объекта и дальнейший анализ полученного спектра. Используя стеклянную призму, в 1671 году Исаак Ньютон осуществил первое «официальное» разложение света. Он же и ввёл в слово «спектр» в научный обиход. Собственно, раскладывая таким же образом свет, Волластон и заметил чёрные линии на спектре. На этом принципе работают и спектрографы.

Разложение света может также происходить с помощью дифракционных решёток. Дальнейший анализ света можно производить самыми различными методами. Изначально для этого использовалась наблюдательная трубка, затем – фотокамера. В наши дни получаемый спектр анализируется высокоточными электронными приборами.

До сих пор речь шла об оптической спектроскопии. Однако современный спектральный анализ не ограничивается этим диапазоном. Во многих областях науки и техники используется спектральный анализ практически всех видов электромагнитных волн – от радио до рентгена. Естественно, такие исследования осуществляются самыми различными методами. Без различных методов спектрального анализа мы бы не знали современной физики, химии, медицины и, конечно же, астрономии.

Спектральный анализ в астрономии

Как отмечалось ранее, именно с Солнца началось изучение спектральных линий. Поэтому неудивительно, что исследование спектров сразу же нашло своё применение в астрономии.

Разумеется, первым делом астрономы принялись использовать этот метод для изучения состава звезд и других космических объектов. Так у каждой звезды появился свой спектральный класс, отражающий температуру и состав их атмосферы. Также стали известны параметры атмосферы планет солнечной системы. Астрономы приблизились к пониманию природы газовых туманностей, а также , и многих других небесных объектов и явлений.

Однако с помощью спектрального анализа можно узнать не только о качественном составе объектов.

Измерить скорость

Эффект Доплера в астрономииЭффект Доплера в астрономии

Эффект Доплера был теоретически разработан австрийским физиком в 1840 году, в честь которого он и был назван. Этот эффект можно пронаблюдать, прислушиваясь к гудку проезжающего мимо поезда. Высота гудка приближающегося поезда будет заметно отличаться от гудка отдаляющегося. Примерно таким образом Эффект Доплера и был доказан теоретически. Эффект заключается в том, что для наблюдателя длина волны движущегося источника искажается. Она увеличивается при удалении источника и уменьшается при приближении. Аналогичным свойством обладают и электромагнитные волны.

При отдалении источника всё темные полосы на спектре его излучения смещаются к красной стороне. Т.е. все длины волн увеличиваются. Точно также при приближении источника они смещаются к фиолетовой стороне. Таким образом стал отличным дополнением к спектральному анализу. Теперь по линиям в спектре можно было узнать то, что раньше казалось невозможным. Измерить скорости космических объекта, рассчитать орбитальные параметры двойных звёзд, скорости вращения планет и многое другое. Особую роль эффект «красного смещения» произвёл в космологии.

Открытие американского учёного Эдвина Хаббла сравнимо с разработкой Коперником гелиоцентрической системы мира. Исследуя яркость цефеид в различных туманностях, он доказал, что многие из них расположены намного дальше Млечного Пути. Сопоставив полученные расстояния с спектров галактик, Хаббл открыл свой знаменитый закон. Согласно нему, расстояние до галактик пропорционально скорости их удаления от нас. Хотя его закон несколько разнится с современными представлениями, открытие Хаббла расширило масштабы Вселенной.

Спектральный анализ и современная астрономия

Сегодня без спектрального анализа не происходит практически ни одного астрономического наблюдения. С его помощью открывают новые экзопланеты и расширяют границы Вселенной. Спектрометры несут на себе марсоходы и межпланетные зонды, космические телескопы и исследовательские спутники. Фактически без спектрального анализа не было бы современной астрономии. Мы так и дальше бы вглядывались пустой безликий свет звёзд, о котором не знали бы ничего.

Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, невидимые глазом, но действующие на фотопластинку. Еще более короткую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает.

За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

Существуют следующие виды спектров:

Сплошной или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электромагнитного разряда. Каждый газ излучает строго определенный набор длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится ярки и более горячий источник дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Излучение спектров позволяет производить анализ химического состава газов, излучающих свет или поглощающих его, независимо от того, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Нужно помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Современная наука и техника немыслимы без знания химического состава веществ, которые являются объектами деятельности человека. Минералы, найденные геологами, и новые вещества и материалы, полученные химиками, прежде всего характеризуются по химическому составу. Для правильного ведения технологических процессов в самых различных отраслях народного хозяйства необходимо точное знание химического состава исходного сырья, промежуточных и готовых продуктов.

Бурное развитие техники предъявляет все новые требования к методам анализа вещества. Еще сравнительно недавно можно было ограничиться определением примесей, присутствующих в концентрации до 10-2–10-3%. Появление и быстрое развитие в послевоенные годы промышленности атомных материалов, а также производства твердых, жаропрочных и других специальных сталей и сплавов потребовало повышения чувствительности аналитических методов до 10-4– 10-6%, так как было установлено, что присутствие примесей даже в таких малых концентрациях существенно влияет на свойства материалов и ход некоторых технологических процессов.

В последнее время в связи с развитием промышленности полупроводниковых материалов к чистоте веществ, а следовательно, и к чувствительности аналитических методов предъявляются еще более высокие требования – необходимо определять примеси, содержание которых совершенно ничтожно (10-7–10-9%). Конечно, подобная сверхвысокая чистота веществ нужна только в отдельных случаях, но в той или иной степени повышение чувствительности анализа стало необходимым требованием почти во всех областях науки и техники.

При производстве полимерных материалов концентрация примесей в исходных веществах (мономерах) была весьма большой – часто десятые доли и даже целое число процентов. Недавно обнаружено, что качество многих готовых полимеров очень сильно зависит от их чистоты. Поэтому в настоящее время исходные непредельные соединения и некоторые другие мономеры проверяют на присутствие примесей, содержание которых не должно превышать 10-2– 10-4%. В геологии все шире используются гидрохимические методы разведки рудных месторождений. Для их успешного применения необходимо определять соли металлов в природных водах при концентрации 10-4– 10-8 г/л и даже меньше.

Повышенные требования предъявляются в настоящее время не только к чувствительности анализа. Внедрение в производство новых технологических процессов обычно тесно связано с разработкой методов, обеспечивающих достаточно высокую скорость и точность анализа. Наряду с этим от аналитических методов требуется высокая производительность и возможность автоматизации отдельных операций или всего анализа. Химические методы анализа далеко не всегда отвечают требованиям современной науки и техники. Поэтому все шире внедряются в практику физикохимические и физические методы определения химического состава, которые обладают рядом ценных характеристик. Среди этих методов одно из главных мест по праву занимает спектральный анализ.

Благодаря высокой избирательности спектрального анализа можно с помощью одной и той же принципиальной схемы, на одних и тех же приборах анализировать самые различные вещества, выбирая в каждом отдельном случае только наиболее благоприятные условия для получения максимальной скорости, чувствительности и точности анализа. Поэтому несмотря на громадное число аналитических методик, предназначенных для анализа различных объектов, все они основаны на общей принципиальной схеме.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия – испускание) и абсорбционные (абсорбция – поглощение).

Рассмотрим схему эмиссионного спектрального анализа (рис. 6.8а). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис. 6.8.

а – эмиссионного: б – абсорбционного: 1 – источник света; 2 – осветительный конденсор; 3 – кювета для анализируемой пробы; 4 – спектральный аппарат; 5 – регистрация спектра; 6 – определение длины волны спектральных линий или полос; 7 – качественный анализ пробы с помощью таблиц и атласов; 8 – определение интенсивности линий или полос; 9 – количественный анализ пробы по градуировочному графику; λ – длина волны; J – интенсивность полос

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов – спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 6.9а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 6.9е). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 6.96). Каждая полоса образована большим числом близко расположенных линий.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты – монохроматоры – позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

Рис. 6.9.

а – линейчатый; 6 – полосатый; видны отдельные линии, составляющие полосу; в – сплошной. Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение); λ – длина волны

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы , спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме ) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов – образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Схема проведения абсорбционного спектрального анализа (рис. 6.8б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения, т.е. излучения с любой длиной волны. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр вещества составляют тс длины волн, интенсивность которых уменьшилась при прохождении сплошного света через это вещество (рис. 6.10). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат – величину поглощения света веществом.

Рис. 6.10.

а – фотографическое; б – графическое; I – спектр источника сплошного света; II – спектр того же излучения после прохождения через анализируемую пробу

Спектры поглощения получают с помощью спектральных аппаратов – спектрофотометров, в состав которых входят источник сплошного света, монохроматор и регистрирующее устройство.

В остальном схемы проведения абсорбционного и эмиссионного анализа совпадают.

Спектральный анализ по спектрам испускания или поглощения включает следующие операции.

  • 1. Получение спектра анализируемой пробы.
  • 2. Определение длины волны спектральных линий или полос. После этого с помощью таблиц или атласов устанавливают их принадлежность к определенным элементам или соединениям, т.е. находят качественный состав пробы.
  • 3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам или соединениям, что позволяет найти их концентрацию в анализируемой пробе по предварительно построенным с помощью эталонов градуировочным графикам, т.е. найти количественный состав пробы.

Весь процесс выполнения спектрального анализа состоит, как мы видели, из нескольких этапов. Эти этапы можно изучать последовательно, независимо друг от друга, а затем рассмотреть их взаимосвязь.

С помощью спектрального анализа можно определять как атомный (элементарный), так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентраций.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Следует отмстить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода.

Область использования молекулярного спектрального анализа охватывает главным образом органические вещества, хотя можно с успехом анализировать и неорганические соединения. Молекулярный спектральный анализ внедряется главным образом в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Чувствительность спектрального анализа очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3–а для некоторых веществ даже 10-5–1-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1–10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа. Благодаря высокой чувствительности атомный спектральный анализ широко применяется для анализа чистых и особо чистых металлов, в геохимии и почвоведении для определения микроконцентраций различных элементов, в том числе редких и рассеянных, в промышленности атомных и полупроводниковых материалов.

Чувствительность молекулярного спектрального анализа для различных веществ изменяется в еще более широких пределах. В ряде случаев с трудом удается определять вещества, содержание которых в анализируемом образце составляет проценты и десятые доли процента, но можно привести примеры и очень высокой чувствительности молекулярного анализа 10-7–10-8%. Точность атомного спектрального анализа зависит от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ±1–3% по отношению к определяемой величине. Поэтому, например, точным является серийный спектральный анализ металлов и сплавов. В металлургии и машиностроении спектральный анализ стал в настоящее время основным аналитическим методом.

Значительно ниже точность анализа веществ, состав и структура которых сильно меняется от пробы к пробе, но в последнее время и в этой области положение заметно улучшилось. Стал возможным количественный спектральный анализ руд, минералов, горных пород, шлаков и тому подобных объектов. Хотя полностью задача еще не решена, количественный анализ неметаллических проб сейчас широко применяется во многих отраслях промышленности – в металлургии, геологии, при производстве огнеупоров, стекол и других видов продукции.

Относительная ошибка определения при атомном спектральном анализе мало зависит от концентрации. Она остается почти постоянной как при анализе малых примесей и добавок, так и при определении основных компонентов образца. Точность химических методов анализа существенно снижается при переходе к определению примесей. Поэтому атомный спектральный анализ точнее химического в области малых концентраций. При средних концентрациях (0,1–1%) определяемых веществ точность обоих методов примерно одинакова, но в области высоких концентраций точность химического анализа, как правило, выше. Молекулярный спектральный анализ дает обычно более высокую точность определения, чем атомный, и не уступает в точности химическому даже при больших концентрациях.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так, при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектральноаналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.

По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико. Установлено, что и эти оставшиеся операции могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.