Меню

Ультразвуковые расходомеры. Расходомеры

Кровельные материалы

Цель исследования - анализ российского рынка промышленных расходомеров .

Расходомер - устройство, измеряющее расход жидкого или газообразного вещества, проходящего сечение трубопровода.

Сам по себе расходомер (первичный датчик, сенсор) измеряет расход вещества в единицу времени. Для практического применения часто удобно знать расход не только в единицу времени, но и за определенный период. С этой целью выпускаются счетчики расхода, которые состоят из расходомера и интегрирующей электронной схемы (или набора схем для оценки других параметров потока). Обработка показаний расходомера может также выполняться удаленно при помощи проводного или беспроводного информационного интерфейса.

В самом общем случае выпускаемые расходомеры можно разделить на бытовые и промышленные . Промышленные расходомеры применяются для автоматизации различных производственных процессов, где существует ток жидкостей, газов, высоковязких сред. Бытовые расходомеры обычно используются для расчета коммунальных платежей и предназначены для измерения расхода водопроводной воды, теплоносителя, газа.

Объектом настоящего исследования являются промышленные расходомеры следующих типов: вихревые, массовые, ультразвуковые, электромагнитные . Расходомеры перечисленных типов получили наибольшее распространение в современных технологических процессах.

Тема промышленной расходометрии в свете федеральных инициатив по повышению энергоэффективности российской экономики является крайне актуальной. На этом рынке сложилась интересная конкуренция среди различных типов расходомеров: электромагнитные являются «золотым» стандартом промышленных процессов и оптимальным решением по соотношению цена/качество. Вместе с тем они могут применяться только совместно с электропроводящими жидкостями, и не могут быть использованы для измерения расхода нефти и газа - одной из главных задач расходометрии. По этой причине на смену электромагнитным расходомерам постепенно приходят массовые, ультразвуковые и вихревые. Каждый из перечисленных типов имеет как свои преимущества, так и свои недостатки.

Российский рынок расходометрии в сильной степени зависит от импортной продукции . Доля импорта в рассматриваемый хронологический период неизменно превышала 50%, а такие компании как Endress+Hauser, Krohne, Yokogawa, Emerson, Siemens прочно закрепились на рынке. Российские производители имеют сильные позиции, преимущественно в сегменте бытовых расходомеров.

Хронологические рамки исследования: 2008-2010 гг.; прогноз - 2011-2015 гг.

География исследования: Российская Федерация.

Отчет состоит из 6 частей и 17 разделов .

В первой части приведены общие сведения об объекте исследования.

В первом разделе представлены основные определения.

Во втором разделе описаны основные типы расходомеров, составляющие объект исследования, и не относящиеся к объекту исследования. В заключении раздела приведена сводная таблица типовых характеристик расходомеров различных видов.

В третьем разделе проанализированы области применения расходомеров.

В четвертом разделе приведено описание мирового рынка: количественные характеристики, структура, тенденции, перспективные области использования.

Вторая часть посвящена описанию российского рынка расходомеров.

В пятом-восьмом разделах представлены основные количественные характеристики российского рынка расходомеров: объем за рассматриваемый период, динамика, десять ведущих производителей, структура рынка по рассматриваемым типам, характеристики внутреннего производства.

В третьей части содержатся данные внешней торговли расходомерами.

Девятый раздел посвящен описанию методологии анализа внешней торговли.

В десятом и одиннадцатом разделе представлен анализ соответственно импортных и экспортных поставок. В каждом разделе приведены количественные характеристики за рассматриваемый период, структура поставок по типу, по странам, по производителям (в том числе в разрезе типов). Все параметры приводятся в денежном и натуральном выражениях.

В четвертой части представлен конкурентный анализ.

В двенадцатом разделе приведены профили лидеров рынка (10 ведущих иностранных и российских компаний).

В тринадцатом разделе представлен ассортиментный анализ производителей расходомеров.

В пятой части приведен анализ потребления расходомеров.

В четырнадцатом разделе описана структура потребления расходомеров по отраслям, описаны основные механизмы закупок продукции.

В пятнадцатом разделе подробно описаны области применения расходомеров в нефтегазовой отрасли: учет добычи ископаемых, системы поддержания пластового давления, насосные перекачивающие станции.

Шестая часть посвящена описанию тенденций перспектив рынка.

В шестнадцатом разделе представлен анализ политических, экономических и технологических факторов развития рынка.

В семнадцатом разделе предложен количественный и качественный прогноз рынка расходомеров до 2015 года.

В заключении отчета сформулированы выводы.

К отчету прилагается база данных российских и иностранных производителей расходомеров.

Содержание маркетингового исследования рынка расходомеров
Введение
ЧАСТЬ 1. ОБЩИЕ СВЕДЕНИЯ. МИРОВОЙ РЫНОК РАСХОДОМЕРОВ
1. Определения. Основные характеристики расходомеров
2. Типы расходомеров
2.1. Массовый (кориолисовый) расходомер
2.2. Электромагнитные расходомеры
2.3. Вихревые расходомеры
2.4. Ультразвуковые расходомеры
2.5. Другие виды расходомеров
2.6. Сводная таблица областей применения
3. Области применения расходомеров
4. Мировой рынок расходомеров
ЧАСТЬ 2. РОССИЙСКИЙ РЫНОК РАСХОДОМЕРОВ
5. Общие характеристики российского рынка расходомеров. Баланс рынка расходомеров
6. Лидеры рынка российского рынка расходомеров
7. Структура рынка расходомеров по типам
8. Внутреннее производство расходомеров
8.1. Методология анализа внутреннего производства расходомеров
8.2. Количественные характеристики внутреннего производства расходомеров
ЧАСТЬ 3. ВНЕШНЯЯ ТОРГОВЛЯ РАСХОДОМЕРАМИ
9. Методология анализа внешней торговли расходомерами
10. Импорт расходомеров
10.1. Динамика импорта расходомеров в 2008-2010 гг.
10.2. Структура импорта расходомеров по типу в 2008-2010 гг.
10.3. Структура импорта расходомеров по странам в 2008-2010 гг.
10.4. Структура импорта расходомеров по производителю в 2008-2010 гг.
10.5. Структура импорта расходомеров по типу в разрезе производителей в 2009 году
10.5.1. Вихревые расходомеры
10.5.2. Массовые расходомеры
10.5.3. Ультразвуковые расходомеры
10.5.4. Электромагнитные расходомеры
10.5.5. Прочие расходомеры
11. Экспорт расходомеров
11.1. Динамика экспорта расходомеров по годам в 2008-2010 гг.
11.2. Структура экспорта расходомеров по типу в 2009 году
11.3. Структура экспорта расходомеров по странам в 2008-2010 гг.
11.4. Структура экспорта расходомеров по производителю в 2008-2010 гг.
ЧАСТЬ 4. КОНКУРЕНТНЫЙ АНАЛИЗ РЫНКА РАСХОДОМЕРОВ
12. Профили лидеров рынка расходометрии
13. Ассортиментный анализ расходомеров
ЧАСТЬ 5. АНАЛИЗ ПОТРЕБЛЕНИЯ РАСХОДОМЕРОВ
14. Структура потребления расходомеров по отраслям
15. Особенности потребления в нефтегазовой отрасли
15.1. Производители оборудования
15.2. Замерные установки для учета добычи нефти
15.3. Станции поддержания пластового давления
15.4. Насосные перекачивающие станции
ЧАСТЬ 6. ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РЫНКА РАСХОДОМЕРОВ
16. Внешние факторы рынка расходомеров
16.1. Политические и законодательные факторы
16.2. Экономические факторы
16.3. Технологические факторы
17. Прогноз развития рынка расходомеров до 2015 года
Выводы

База данных, входящая в состав маркетингового исследования, содержит подробные сведения о 38 производителях расходомеров . Каждая компания в базе данных описана следующим набором реквизитов:
- Название компании
- Регион/страна
- Контакты
- URL
- Год основания
- О компании
- Количественные показатели деятельности
- Виды выпускаемых расходомеров
- Вихревые расходомеры
- Массовые расходомеры
- Ультразвуковые расходомеры
- Электромагнитные расходомеры
- Другие расходомеры
- Другая продукция
- Система сбыта
- Сервис
- Маркетинговая активность
- Дополнительно

Для удобства пользования, в базе данных предусмотрена возможность выбрать производителей вихревых, массовых, ультразвуковых, электромагнитных и других расходомеров, а также компании из необходимого региона.

Внимание! Для заказа маркетингового исследования с этой страницы пришлите реквизиты Вашей компании для выставления счета на .

НПФ «РАСКО» уже более 15 лет целенаправленно занимается вопросами коммерческого учета воды, тепла, газа и пара. Этой проблеме посвящен целый ряд статей наших специалистов в различных изданиях. Ниже мы предлагаем для обсуждения статью инженера-метролога Коломенского ЦСМ Иванушкина И.Ю., затрагивающую интересный, по нашему мнению, вопрос внедрения новых приборов коммерческого учета газа.

Приборы учета - всеми ли можно пользоваться?

Иванушкин И.Ю. инженер по метрологии 1 - й категории Коломенского филиала ФГУ «Менделеевский ЦСМ»

Всвязи с тем значением, которое приобретает сейчас учет энергоресурсов, особенно в связи с предстоящим принятием новой редакции закона об энергосбережении, хотелось бы еще раз поговорить о приборах, применяемых для этой цепи, в частности о таком классе средств измерений, как струйные расходомеры - счетчики.

Общеизвестно, что к основным требованиям, которые предъявляются к приборам коммерческого учета, относятся высокая точность измерения в широком диапазоне изменения физических величин, надежность, стабильность показаний в течение межповерочного интервала, простота обслуживания. К последнему относятся также работы, связанные с поверкой приборов, то есть периодического подтверждения их метрологических характеристик.

Именно на этих показателях и фиксируют внимание потребителей многочисленные организации, производящие и продающие приборы учета. Обещания высокой точности, широких диапазонов измерения, длительных межповерочных интервалов (МПИ), а иногда и возможности поверки без демонтажа, необязательность прямых участков измерительных трубопроводов (ИТ), либо необыкновенно малые значения, и т.д. и т.п., сыпятся на головы потребителей как из рога изобилия. Но так ли всегда на самом деле?

Речь пойдет, как уже было сказано, о струйных счетчиках-расходомерах. Во-первых, потому, что приборы этого типа появились на рынке сравнительно недавно и известно о них немного, во-вторых, потому, что некоторые производители этих счетчиков прельщают потребителей особенно владельцев измерительных комплексов на базе сужающих устройств, вышеупомянутым отказом от длинных прямых участков и отсутствием необходимости поверки этих самых сужающих устройств (СУ).

Собственно, сам струйный автогенератор (САГ), являющийся "сердцем" этих счетчиков известен давно и применяется в системах пневмоавтоматики в качестве одного из звеньев. Применять его для измерения расхода стали относительно недавно и на отечественном рынке имеются несколько моделей таких приборов разных производителей.

РМ-5-ПГ : «Точное измерение объемного расхода по ГОСТ 8.586-2005 в широком динамическом диапазоне независимо от плотности измеряемой среды... Диапазон измеряемых расходов 1:20…... Погрешность ±1,5%».

(Напомню: ГОСТ 8.586-2005 «Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств»).

ИРГА-РС : « В основу работы струйного расходомера положен принцип измерения расхода и количества сред методом переменного перепада давления. Определение величины перепада давления и преобразование его для цепей измерения расхода потока производится струйным автогенератором (САГ), который входит в состав струйного расходомера. Он используется вместе с сужающим устройством и фактически заменяет дифманометр в узлах учета на основе сужающих устройств (СУ).

САГ представляет собой бистабильный струйный элемент, охваченный обратными связями, обеспечивающими режим автоколебаний. Колебания струи в САГ генерируют пульсации давления, которые при помощи пъезодатчиков преобразуются в электрический сигнал. Частота этого сигнала пропорциональна объемному расходу (корню квадратному из перепада давлений между входом и выходом САГ, т.е. между ппюсовой и минусовой камерами сужающего устройства, входящего в состав струйного расходомера).

В результате замены СУ с дифманометром на "Ирга-РС" улучшаются технические и метрологические характеристики узла учета: диапазон измерений возрастает и становится не менее чем 1:30, а погрешность измерения в диапазоне от 0,03 Q max , до Q max составит ≤ ±0,5%, без учета систематической погрешности СУ. Затраты на такую реконструкцию сопоставимы со стоимостью старого узла учета».

Turbo Flow GFG-F: «Преимущества:

  • относительная погрешность ± 1%,
  • минимальные прямые участки,
  • динамический диапазон 1:100, с возможностью расширения до 1:180,
  • совместимость присоединительных размеров с распространенными типами счетчиков фланцевого исполнения.

Принцип действий измерительного комплекса Turbo Flow GFG-F :

поток газа, проходя по трубопроводу, попадает в рабочую камеру расходомера, в которой установлена диафрагма. Перед диафрагмой формируется область повышенного давления, за счет кото­рого часть потока попадает в струй­ный автогенератор (САГ, где образуются колебания потока газа, пропор­циональные скорости потока)».

Turbo Flow GFG-ΔP : «Расходомеры газа Turbo Flow GFG-ΔP предназ­начены для модернизации узлов учета на базе сужающих уст­ройств (СУ), оснащенных преобразователями перепада давления. Для модернизации вместо дифманометра на стандартный вентильный блок устанавливается первичный преобразователь расхода (ПР) и электронный блок обработки ин­формации. Частота, регистрируемая на элементах струйного генератора, функционально зависит от расхода газа через СУ. Преобразованный частотный сигнал линейно пропорционален расходу газа, прошедшему через СУ.

Замена существующих приборов происходит путем установки расхо­домера-счетчика GFG-ΔP на уже смонтированные трубки, без допол­нительных затрат на трубный мон­таж. В результате улучшаются мет­рологические характеристики узла учета. Расширяется динамический диапазон до 1:100, а погрешность измерений снижается до ±1% во всем диапазоне измерений».

РС-СПА-М: «Достоинства струйных расходомеров-счётчиков:

  • унификация измерительных приборов для различных сред;
  • отсутствие подвижных частей, что обуславливает высокую надежность, стабильность характеристик во времени, высокую технологич­ность изделия;
  • независимость градуировочного коэффициента от плотности из­меряемой среды;
  • возможность измерения малых расходов, агрессивных, неэлектропроводных и криогенных сред;
  • не требуются прямые участки до и после места установки;
  • возможность проверки на месте установки.

Функциональные возможности прибора:

    Приведение расхода (объема} к нормальным условиям (при под­ключении к прибору датчиков температуры и давления).

    Измерение плотности изме­ряемой среды.

    Измерение массового расхода (объема).

    Осуществление проверки без демонтажа с трубопровода.

Технические характеристики:

Измеряемые среды: жидкости, газы, пар

Диаметр условного прохода, мм: 5÷4000

Динамический диапазон измерения, Q max / Q min: 50:1

Предел допускаемой основной погрешности, %: 0,15».

Последний из названных привле­кает особенное внимание, поскольку в нашем регионе примерно от 25 до 30% узлов учета природного газа оборудовано этими счетчиками и есть тенденция к их увеличению.

«Недостатки: струйному автоге­нераторному расходомеру присущи все недостатки, которыми обладает вихревой расходомер...

(* Примечание: Выше в статье ав­тор перечисляет недостатки вихревых расходомеров: повышенная чувст­вительность к искажениям эпюры скоростей потока (а значит, повы­шенные требования к стабильности потока, то есть к длинам прямых участков) и относительно большие невозвратимые потери напора, свя­занные с интенсивным вихреобразованием при обтекании потоком плохо обтекаемого тепа. Самым серьезным недостатком является недостаточная стабильность коэффициента преобразования в необходимом диапазоне, что практически не позволяет рекомендовать приборы данного типа для коммерческого учета газа без пред­варительной калибровки изделия непосредственно в условиях эксплуатации или крайне близких к ним.)

Однако, к сожалению, есть и до­полнительные. Во-первых, струйный элемент (основа данного прибора) имеет крайне большие размеры по отношению к величине измеряемого расхода. Поэтому он, с одной сторо­ны, может использоваться только в качестве парциального расходоме­ра, через который идет только незначительная часть проходящего через измерительное сечение расхода га­за (а это неминуемо снижает досто­верность измерений), а с другой, су­щественно больше, чем вихревой расходомер, подвержен засорению. А во-вторых, нестабильность коэф­фициента преобразования у данного прибора еще больше, чем у вихревого расходомера».

В этой же статье автор приводит результаты испытаний расходомера РС-СПА, проведенных фирмой "ГАЗТУРБавтоматика" совместно с фирмой "Газприборавтоматика", в результате которых было установ­лено, что изменение коэффициента преобразования у различных моди­фикаций прибора находится в диапа­зоне от 14,5% до 18,5% при изме­нении расхода через прибор в диапа­зоне изменения расхода не более 1:5 (!).

Во-вторых, вызывает недоумение то, что, например, для счетчиков ти­па РС-СПА разработана собственная методика выполнения измерений (МВИ) МИ 3021-2006, во многом про­тиворечащая ГОСТ 8.586-2005, осо­бенно в части требований к монтажу средств измерений (СИ) и измери­тельному участку. На этом стоит ос­тановиться подробнее, поскольку аналогичные вопросы возникали и при общении с производителями других моделей, например Turbo Flow GFG. Главное, что служило кам­нем преткновения, - это требования к СУ и к прямым участкам. Напомню, что и те и другие счетчики выпуска­ются в двух вариантах: одни служат для замены дифманометров и под­ключаются к существующим СУ, дру­гие (как правило для ИТ малых диа­метров) выполнены в моноблочном исполнении со своим СУ. Например, в счетчиках РС-СПА «первичный пре­образователь расхода (ППР) РС включает в себя САГ с устройством преобразования сигнала, выполнен­ных в одном агрегате и установлен­ными на измерительный трубопро­вод с местным сужением потока . Здесь, мне кажется, нужно разделить два вопроса: зачем нужна диафрагма (местное сужение потока) и зачем необходимы прямые участки опреде­ленной длины?

Что бы ни заявляли производите­ли, так или иначе эти приборы ис­пользуют для вычисления расхода именно перепад давления, который создается с помощью. СУ В одном из патентов на счетчик РС-СПА (№2175436) автор после объяснения работы САГ пишет следующее: «...В результате устанавливаются устойчивые колебания струи с часто­той, пропорциональной объемному расходу и корню квадратному из от­ношения перепада давления на струйном автогенераторе к плотности измеряемой среды

f= kQ = k √(∆ρ/ρ), где

f - частота колебаний.

Q - объемный расход;

∆ρ и ρ- перепад давления и плот­ность измеряемой среды;

к - коэффициент пропорциональ­ности.»

Перепад давления на САГ, или, говоря иначе, разность потенциалов, является источником возникновения автоколебаний и от величины этой разности зависит их частота. То есть, вычисление расхода тем точнее, чем точнее измерение частоты коле­баний, то есть чем точнее перепад давления на САГ соответствует рас­ходу через данный участок ИТ. Влия­ют ли на точность воспроизведения перепада давления параметры СУ? Несомненно. Об этом написаны уже десятки томов сотни статей и ГОСТ 8.586-2005, который в какой-то сте­пени подытожил результаты много­численных исследований этого воп­роса. Почему производители заявля­ют, что при установке этих счетчиков состояние СУ их больше не волнует, совершенно непонятно. Как извест­но, на точность воспроизведения пе­репада влияют и качество входной кромки, и шероховатость, и другие параметры диафрагмы.

Приведу пример. Поскольку одна из основных целей, которые сейчас преследуют потребители газа (и ко­торую поддерживают менеджеры по продаже), заключается в том, что­бы облегчить себе жизнь и избавить­ся от необходимости удлинения прямых участков (!), ежегодного де­монтажа и поверки диафрагм (!), свести всю поверку измерительного комплекса к поверке счетчика «на месте» (!), да еще и раз в два года (!), то очень скоро в балансовых пока­зателях могут появиться расхожде­ния, причины которых будут неявны. В ссылке указано, что полный сред­ний срок службы, например, счетчи­ка РС-СПА составляет 8 пет. Вот как изменятся показания счетчика в те­чение этого интервала времени, если проводить расчет не по методике , а по ГОСТ 8.586, то есть не игнорируя наличие в счетчике сужающего уст­ройства. В качестве данных были взяты значения конкретного узла учета природного газа одного из нес­кольких ГРП машиностроительного предприятия и параметры установленного на ГРП счетчика РС-СПА исполнения РС-ПЗ, в том числе параметры диафрагмы. Среднее годовое значение давления газа 3,5 кГс/см2, средняя годовая тем­пература 5 °С, максимальный пере­пад давления (примерно поддержи­ваемый в течение года) - 25000 Па. Среднее за год изменение внутрен­него диаметра диафрагмы было при­нято + 0,01%. значение вполне реаль­ное, даже заниженное, учитывая ка­чество газа. Результаты расчетов:

    при установке счетчика макси­мальный расход Qс составит 4148,89 м 3 /ч;

    через два года (первый межповерочный интервал счетчика) это значение будет уже равняться 4182,56 м 3 /ч;

    через четыре года 4198,56 м 3 /ч:

    через шесть лет 4207,21 м 3 /ч:

    через восемь лет (гарантиро­ванный срок службы счетчика) -4212,38 м 3 /ч.

Таким образом, через восемь лет эксплуатации, при прочих равных условиях, счетчик покажет расход, который на 63,58 м3/ч (!) больше реального, будучи при этом полностью исправным и прошедшим по­верку, то есть, при сохранении своих метрологических характеристик.

Замечу, что в расчетах учитыва­лось только изменение внутреннего диаметра диафрагмы и изменение поправочного коэффициента притуп­ления входной кромки (формулы 5.13 и 5.14 ГОСТ 8.586.2-2005), остальные характеристики, в том числе и харак­теристики измерительного трубо­провода, считались неизменными.

Более того, были рассчитаны ха­рактеристики измерительного комп­лекса при минимальном учитывае­мом перепаде давления (на момент установки счетчика он составлял 1000 Па, при этом относительная расширенная неопределенность из­мерения расхода равнялась 3,93%). В результате расчетов были получе­ны следующие значения относитель­ной расширенной неопределенности (при тех же условиях изменения внут­реннего диаметра диафрагмы и ко­эффициента притупления входной кромки):

    через два года 4,06 %;

    через четыре 4,16 %;

    через шесть 4,22%;

    через восемь 4,25%.

То есть, через два года эксплуата­ции, при следующей поверке, изме­рительный комплекс уже не соот­ветствовал бы установленным нор­мам погрешности. Довольно трудно при этом говорить о коммерческом учете, поскольку его достоверность более чем сомнительна. Хочу доба­вить, что полные результаты расче­тов, которые здесь не приводятся, чтобы не перегружать статью, пока­зывают, что изменение в указанном диапазоне характеристик СУ приве­дет к изменению таких показателей, как коэффициент гидравлического сопротивления, коэффициент потерь давления и др., которые приведут к изменению характеристик не толь­ко самого ГРП, но и газопотребляю­щего оборудования.

Замечу, в расчетах предполага­лось, что измерительный комплекс выполнен с учетом требований ГОСТ 8.586-2005, то есть в том числе и с прямыми участками ИТ необходи­мой длины, о необязательности кото­рых заявляют производители счетчиков РС-СПА и некоторых других.

Почему, тоже непонятно. Повто­рю, точность вычисления расхода струйными счетчиками зависит от перепада давления на САГ, точнее, от того, насколько точно перепад да­вления на СУ соответствует скорости потока. А это, как известно, зависит не только от характеристик СУ. но и от того, в какой области пара­метров находится сам поток в изме­рительном сечении. Для того, чтобы в месте установки диафрагмы было сформировано установившееся те­чение, характеризующееся устойчи­вым турбулентным режимом с чис­лом Rе в линейной области, как раз необходимы прямые участки опреде­ленной длины, исключающие на­личие местных возмущений потока. Об этом тоже написано немало, в том числе и в ГОСТ 8.586-2005, который на основании результатов многолет­них исследований регламентирует требования к прямым участкам в зависимости от наличия тех или иных местных сопротивлений (МС).

И еще один аспект не может не вызвать недоумение. Речь идет о динамическом диапазоне и пог­решности счетчиков. Напомню став­шие уже "хрестоматийными" недос­татки диафрагмы:

  • узкий динамический диапазон измерения расхода (в среднем от 1:3 до 1:5);
  • нелинейный выходной сигнал, требующий линеаризации;
  • нормирование погрешности с приведением к верхнему пределу измерений, а следовательно, гипер­болический рост погрешности, при­веденной к точке измерения при уменьшении расхода;
  • значительное падение давления на сужающем устройстве (СУ), не­избежное в силу принципа действия;
  • неконтролируемое изменение погрешности вследствие затупления кромки при эксплуатации;
  • невозможность извлечения СУ без перекрытия трубопровода:
  • значительная длина необходи­мых прямых участков без местных сопротивлений;
  • засорение импульсных линий в "грязных" потоках, накопление кон­денсата, приводящее к неверным по­казаниям;
  • сложность расчета СУ, включая расчет неопределенностей измере­ния расхода.

Я согласен с тем, что благодаря встроенной в счетчик электронике можно в какой-то степени расширить диапазон измерений, линеаризовать характеристику расходомера, снизить общую погрешность комплекса. Но, повторюсь, вряд ли каким-то обра­зом удастся учесть изменение свойств диафрагмы хотя бы за межповерочный интервал (не говоря уже о большем периоде времени), сте­пень засорения соединительных ли­ний (изменение значения перепада давления) и, тем более, искажение потока за счет местных сопротивлений.

И все было бы ничего, если бы не то обстоятельство, что счетчики эти используются, как правило, в уз­лах коммерческого учета газов и жидкостей, то есть так или иначе связаны с государственными учетны­ми и энергосберегающими опера­циями. Многочисленные публикации на данную тему говорят о неприме­нимости данных приборов для этих цепей, а в отчете рабочей группы по подготовке материалов и проекта решения совместного технического совета Департамента топливно-энергетического хозяйства и Пре­фектур г. Москвы комиссия, прово­дившая анализ теплосчетчиков и расходомеров воды делает вооб­ще категоричный вывод: «Теплосчетчик РС-СПА-М-МАС не отвечает большинству основных и дополнительных критериев и не может быть рекомендован к использованию». Замечу, что среди критериев, выдви­нутых рабочей группой, были, например, такие, как «высокая на­дежность и точность измерений на протяжении длительного промежутка времени, минимальное гидравличес­кое сопротивление при номинальном расходе, электромагнитная совмес­тимость» и др.

Вот те основные аспекты, кото­рые хотелось отметить при обсуж­дении струйных счетчиков-расходомеров. Замечу еще раз, что в статье не подвергается сомнению примени­мость метода при измерении расхо­да вообще. Речь идет именно о ком­мерческом учете энергоресурсов, со своими требованиями и своей спецификой. Поэтому хотелось бы пожелать производителям подобных приборов быть более точными и добросовестными в определении харак­теристик и рекомендаций по приме­нимости их продукции для тех или иных целей. Я понимаю, и не раз слышал, что рынок диктует свои пра­вила и т.д. и т.п. Но в конце концов не надо забывать, что все мы пользу­емся общими запасами. И планета производит нефть, газ, воду, воздух независимо от политических форма­ций и форм собственности. Так кто кого хочет обмануть?


Особенности выбора типоразмера расходомера

В большинстве случаев величина расхода, которую требуется измерять, изменяется в довольно широких пределах от Q min (минимальный расход) до Q max (максимальный расход). Отношение величины максимального к величине минимального расхода называется динамическим диапазоном измерения. Необходимо помнить, что под минимальной и максимальной величинами расхода, в данном случае, понимаются такие значения, при измерении которых расходомер обеспечивает заявленную точность.

Выбор типоразмера измерителя расхода является наиболее сложной задачей. Номинальный диаметр его измерительной части (Ду) и диаметр трубопровода определяют расход измеряемой среды, скорость движения которой должна находиться в определенных пределах.

Так при измерении расхода абразивных жидкостей, пульпы, рудного шлама и т.п. электромагнитными расходомерами, необходимо обеспечить скорость движения среды не более 2 м/с. При измерении расходов сред, склонных к образованию отложений (сточные воды), скорость движения среды наоборот рекомендуется повысить, чтобы илистые отложения более эффективно вымывались. Для измерения расходов чистых неабразивных жидкостей электромагнитными расходомерами рекомендуется обеспечить скорость потока равной 2,5…3 м/с.

При измерении расходов жидкостей скорость потока не должна превышать 10 м/с. При измерении расхода газов и пара скорость потока, в большинстве случаев, не должна быть выше 80 м/с.

Ориентировочные значения расхода жидкости в зависимости от диаметра трубопровода и измерительной части расходомера при разных скоростях движения среды приведены в таблице 1.

Таблица 1.

ДУ Расход м 3 /ч
[мм] [дюйм] Расход
при v=0,3 м/с
Заводская уставка
при v~2,5 м/с
Расход
при V=10 м/с
2 1/12" 0,0034 0,0283 0,1131
4 5/32" 0,0136 0,1131 0,4524
8 5/16" 0,0543 0,4524 1,810
15 1/2" 0,1909 1,590 6,362
25 1" 0,5301 4,418 17,67
32 1 1/4" 0,8686 7,238 28,95
40 250 10" 53,01 441,8
50 2" 2,121 17,67 70,69
66 2 1/2" 3,584 29,87 119,5
80 3" 5,429 45,24 181,0
100 4" 8,482 70,69 282,7
125 5" 13,25 110,5 441,8
150 6" 19,09 159,0 636,2
200 8" 33,93 282,7 1131
1767 1 1/2" 1,357 11,31 45,24

На диапазон измерения расхода также влияют температура и давление измеряемой среды. В таблице 2 для примера показаны диапазоны измерения расхода воздуха при температуре 20°С и различном избыточном давлении вихревого расходомера .


Таблица 2.

Диаметр трубы Давление (бар); Плотность (кг/м 3)
0 бар
1,205 кг/м 3
3,4 бар
5,248 кг/м 3
6,9 бар
9,409 кг/м 3
11 бар
14,28 кг/м 3
13,8 бар
17,61 кг/м 3
20,7 бар
25,82 кг/м 3
27,6 бар
34,02 кг/м 3
34,5 бар 4
2,22 кг/м 3
69 бар
83,24 кг/м 3
50 мм 0,4829…9,748 1,288…4245 1,902…76,11 2,512…115,5 2,889…142,5 3,927…208,8 4,482…275,2 5,177…341,6 8,141…673,4
75 мм 1,064…21,48 2,838…93,52 4,190…167,7 5,535…254,6 6,365…313,9 8,215…460,1 9,895…606,3 11,41…752,5 17,94…1484
100 мм 1,832…36,98 4,888..161,0 7,215…288,7 99,531…438,3 10,96…540,5 14,15…792,3 17,00…1044 19,64…1296 30,89…2555
150 мм 4,157…83,93 11,09…365,5 16,37…655,3 21,63…994,8 24,88…1227 32,10…1798 38,59…2369 44,57…2941 70,09…5798
200 мм 7,199…145,3 19,21…632,8 28,35…1135 37,46…1723 43,07…2124 55,59…3113 66,82…4103 77,18…5092 121,4…10039
250 мм 11,35…229,1 30,27…997,5 44,69…1789 57,04…2715 67,90…3348 87,62…4908 105,3…6367 121,7…8027 191,3…15824
300 мм 16,11…325,2 42,97…1416 63,44…2539 83,81…3854 96,38…4752 124,4…6966 149,5…9180 172,7…11393 271,6…22462
350 мм 19,47…393,0 51,95….1712 76,68…3069 101,3…4659 116,5…5745 150,3…8420 180,7…11096 208,7…13772 328,3…27151
400 мм 25,43…513,4 67,85…2235 100,2…4008 132,3…6085 152,2…7503 196,4…10998 236,0…14493 272,6…17988 428,7…35462
450 мм 32,19…649,8 85,88…2830 126,8…5073 167,5…7702 192,6…9497 248,5…13921 298,8…18345 345,1…22768 542,7…44887
500 мм 40,00…807,4 106,7…3516 157,5…6304 208,1…9571 239,3…11801 308,8…17298 371,3…22795 428,8…28292 674,3…55776
550 мм 51,04…1030 136,2…4486 201,0…8044 265,5…12212 305,4…15058 394,1…22072 476,7…29086 547,1…36100 860,5…71170
600 мм 57,85…1168 154,3…5085 227,8…9118 301,0…13842 346,1…17068 446,7…25019 537,032969 620,2…40919 975,3…80671

Более точное определение минимального и максимального значения расходов для данного типоразмера расходомера производится с помощью специальных программных средств, разработанных производителем. При расчете учитывается влияние минимальных и максимальных значений температуры и давления среды, ее плотность, вязкость и другие характеристики, влияющие на скорость потока и объемный расход.


Влияние гидравлического сопротивления

Необходимо также учитывать и то, что расходомер может оказывать определенное сопротивление движению измеряемой среды и вносить дополнительное гидравлическое сопротивление. Наибольшим гидравлическим сопротивлением обладает вихревой расходомер из-за наличия в измерительной части прибора тела обтекания довольно большого объема. Кориолисовый расходомер также обладает гидравлическим сопротивлением, приводящим к потере давления, из-за наличия в конструкции изгибов и разветвлений трубопроводов.

Наименьшим гидравлическим сопротивлением обладают электромагнитные и ультразвуковые измерители расхода, так как они не имеют изгибов и частей, выступающих внутрь измерительной части. Они относятся к полнопроходным. Некоторые потери давления могут быть вызваны материалом футеровки измерительной части (например, резиновой футеровкой) или неправильной установкой (уплотнительные прокладки выступают внутрь проточной части расходомера).

В таблице 3 приведены значения динамического диапазона измерения расхода и максимальные значения скорости потока для расходомеров различного принципа действия.

Таблица 3.

Метод Динамический диапазон Максимальная скорость потока
Электромагнитный 100:1 10 м/с (жидкость)
Вихревой 25:1 10 м/с (жидкость), 80 м/с (пар, газ)
Ультразвуковой (врезные датчики) 100:1 10 м/с (жидкость)
Ультразвуковой (накладные датчики) 100:1 12 м/с (жидкость), 40 м/с (пар, газ)
Кориолисовый 100:1 10 м/с (жидкость), 300 м/с (пар, газ)


Метрологические характеристики и их влияние на выбор

В настоящее время встречаются электромагнитные расходомеры с заявленным динамическим диапазоном 500:1 и даже 1000:1. Такие значительные динамические диапазоны измерения достигаются путем применения многоточечной калибровки при выпуске расходомера из производства. К сожалению, в процессе дальнейшей эксплуатации метрологические характеристики ухудшаются и реальный динамический диапазон значительно сужается.

Метрологические характеристики расходомеров выходят на первый план в случае их применения для коммерческого учета энергоресурсов. Необходимо помнить, что все приборы, которые планируется использовать для целей коммерческого учета, должны быть в обязательном порядке внесены в Государственный реестр средств измерений после прохождения соответствующих испытаний, по результатам которых подтверждаются заявленные производителем метрологические характеристики. Именно действующим описанием типа средства измерения следует руководствоваться при оценке погрешностей. Так как, например, в некоторых случаях, заявленная производителем низкая погрешность измерения может быть обеспечена не во всем диапазоне, а только в некоторой его узкой части. И, к сожалению, производители не всегда отражают этот факт в своей технической документации и рекламных материалах.

Для снижения издержек на последующее метрологическое обслуживание (поверку) расходомеров при прочих равных условиях рекомендуется выбирать приборы с максимальным межповерочным интервалом. На данный момент большинство расходомеров имеет межповерочный интервал один раз 4 года и более. При выборе марки прибора не стоит гнаться за максимальным значением межповерочного интервала в случае когда долговременная точность измерения является определяющей характеристикой, особенно если это предложение от малоизвестного производителя. Для расходомеров с условным диаметром более 250 мм (DN 250) наличие методики поверки без демонтажа измерительной части, так называемой имитационной, беспроливной поверки, зачастую становиться решающим фактором в пользу выбора конкретного производителя и типа. Проведение поверки проливным методом расходомеров с условным диаметром более 250 мм в настоящее время является сложной задачей в виду отсутствия в России аттестованных проливных установок для поверки средств измерения расхода большого диаметра. Но необходимо помнить, что метод беспроливной поверки добавляет к базовой погрешности измерения еще дополнительную погрешность 1…1,5%, что не всегда может быть приемлемо.

В таблице 4 приведены метрологические характеристики измерителей расхода с различным способом измерения, пожалуй, с лучшими на сегодняшний день показателями точности. Если предлагаемое вам поставщиком решение обладает еще более высокими показателями точности, то следует более тщательно подойти к вопросу проверки заявленных метрологических характеристик данного оборудования.

Таблица 4.

На точность измерения объемного и массового расхода влияет не только метод измерения , качество применяемых при изготовлении материалов, примененные схематические решения и программные алгоритмы вычислений, но и правильность монтажа и настройки, своевременность и полнота технического обслуживания. Этим вопросам будет посвящена заключительная, третья часть руководства по выбору расходомеров, так как затраты на монтаж и последующее обслуживание, а также возможные технические особенности применения тоже должны учитываться в процессе выбора расходомера.

Классификация задач измерения расхода

По функциональному назначению задачи измерения расхода в промышленности условно можно разделить на две основные части:
задачи учета:

– коммерческого;

– оперативного (технологического);

Задачи контроля и управления технологическими процессами:

– поддержание заданного расхода;
– смешивание двух и более сред в определенной пропорции;
– процессы дозирования/наполнения.

Задачи учета предъявляют высокие требования к погрешности измерений расхода и стабильности работы расходомера, т. к. его показания являются основанием для расчетных операций между поставщиком и потребителем. К задачам оперативного учета относятся такие применения, как межцеховой, внутрицеховой учет и т. д. В зависимости от требований, предъявляемых к данным задачам, возможно использование расходомеров более простой конструкции с большей погрешностью измерений, чем при коммерческом учете.

Задачи контроля и управления технологическими процессами весьма разнообразны, поэтому выбор типа расходомера зависит от степени важности и требований, предъявляемых к данному процессу.

По условиям измерения задачи определения расхода можно классифицировать следующим образом:
измерение расхода в полностью заполненных (напорных) трубопроводах;
измерение расхода в не полностью заполненных (безнапорных) трубопроводах, открытых каналах и лотках.

Задачи измерения расхода в полностью заполненных трубопроводах являются стандартными, и большинство расходомеров предназначены именно для данного применения.
Задачи второй группы являются специфичными, т. к. требуют, в первую очередь, определения уровня жидкости. Причем, в зависимости от типа лотка или канала, определение расхода возможно через измеренный уровень на основе теоретически доказанных и экспериментально подтвержденных зависимостей расхода жидкости от уровня. Однако, существуют применения, где наряду с измерением уровня жидкости в канале, лотке или не полностью заполненном трубопроводе необходимо определение и скорости потока.


Измерение расхода жидкостей

Для измерения расхода жидкостей в промышленных условиях целесообразно применять электромагнитные, ультразвуковые, массовые кориолисовые расходомеры и ротаметры.
Кроме того, в ряде случаев оптимальным решением может быть применение вихревых расходомеров и расходомеров переменного перепада давления.

При выборе приборов для измерения расхода электропроводящих жидкостей и пульп в первую очередь рекомендуется рассмотреть возможность применения электромагнитных расходомеров.

В силу своих конструктивных особенностей, разнообразия материалов футеровки и электродов данные приборы имеют широкую область применения и используются при измерении расхода следующих сред:
общетехнические среды (вода и др.);
высококоррозионно активные среды (кислоты, щелочи и др.);
абразивные и адгезионные (налипающие) среды;
гидросмеси, пасты и суспензии с содержанием волокон или твердой фазы более 10% (масс.).

Высокая точность измерения (± 0,2…0,5% измеряемой величины), малое время отклика (до 0,1 с в зависимости от модели), отсутствие движущихся частей, высокая надежность и длительный срок службы, минимальное обслуживание – все это делает полнопроточные электромагнитные расходомеры оптимальным решением задач измерения расхода и учета количества электропроводящих сред в трубопроводах малого и среднего диаметра.

Погружные электромагнитные расходомеры широко применяются в задачах оперативного контроля и технологических процессах, где не требуется высокая точность измерений, а также при измерении расхода в трубопроводах больших диаметров (> DN400) и скорости потока в открытых каналах и лотках.

Ультразвуковые расходомеры в основном применяются для измерения расхода неэлектропроводящих сред (нефть и продукты ее переработки, спирты, растворители и др.). Полнопроточные расходомеры применяются как в узлах коммерческого учета, так и для управления технологическими процессами. Погрешность измерения данных приборов, в зависимости от исполнения, составляет порядка ± 0,5% измеряемой величины. В зависимости от принципа измерения среда должна быть чистой (времяим­пульсные расходомеры) или с содержанием нерастворенных частиц и/или нерастворенного воздуха (доплеровские расходомеры). В качестве примера сред для второго случая можно указать гидросмеси, суспензии, буровые растворы и др.

Расходомеры с накладными датчиками просты в монтаже и, как правило, применяются для оперативного учета и в неответственных технологических процессах (погрешность порядка ±1…3% шкалы) или в применениях, где нет возможности установки полнопроточных расходомеров.
Массовые кориолисовые расходомеры, в силу своего принципа измерения, могут измерять расход практически любых сред. Данные приборы отличаются высокой точностью измерений (± 0,1…0,5% измеряемой величины при измерении массового расхода) и высокой стоимостью. Поэтому кориолисовые расходомеры в первую очередь рекомендуется применять в узлах коммерческого учета, процессах дозирования/наполнения или ответственных технологических процессах, где необходимо изме­рять массовый расход среды или контролировать сразу несколько параметров (массовый расход, плотность и температуру).

Кроме того, массовые расходомеры можно применять в качестве плотномеров при их установке, например, в байпасной линии. Во всех остальных случаях, при более простых применениях, массовые расходомеры могут оказаться неконкурентоспособными по сравнению с объемными расходомерами, которые можно применять для решения этих же задач.
В качестве материалов измерительных трубок в массовых расходомерах используются, как правило, нержавеющая сталь, сплав Hastelloy, поэтому данные приборы не годятся для измерения высококоррозионно-активных сред. Способность измерять массовый расход напрямую позволяет применять массовые расходомеры при измерении расхода двухфазных сред с возможностью определения концентрации одной среды в другой. Существуют и ограничения. В качестве материалов измерительных трубок в массовых расходомерах используются, как правило, нержавеющая сталь и сплав Hastelloy, поэтому данные приборы не подходят для измерения расхода высококоррозионно-активных сред. Также на точность измерения расхода массовыми расходомерами сильно влияет наличие нерастворенного газа в измеряемой среде.
Ротаметры, как правило, применяются для измерения малых расходов. Класс точности данных приборов, в зависимости от исполнения, варьируется в пределах 1,6…2,5, поэтому использование данных приборов рекомендуется в задачах оперативного учета и контроля технологических процессов.
В качестве материалов измерительной трубки используются нержавеющая сталь и фторопласт PTFE, что позволяет применять ротаметры для измерения расхода коррозионно-активных сред. Металлические ротаметры также позволяют измерять расход высокотемпературных сред.Необходимо отметить, что измерение расхода адгезионных, абразивных сред и сред с механическими примесями с помощью ротаметров невозможно. Кроме того, существует ограничение по монтажу данного типа расходомеров: их установка допускается только на вертикальных трубопроводах с направлением потока измеряемой среды снизу вверх. Современные ротаметры, кроме индикаторов, могут оснащаться микропроцессорным электронным модулем с выходным сигналом 4…20 мА, счетчиком суммарного количества и конечными переключателями для работы в режиме реле потока.

Несмотря на то, что вихревые расходомеры раз­рабатывались специально для измерения расхода газа/пара, их возможно применять также для измерения расхода жидких сред. Однако, в силу их конструктивных характеристик, наиболее рекомендуемыми применениями данных приборов в задачах оперативного учета и контроля технологических процессов, являются:
измерение расхода высокотемпературных жидкостей с температурой до +450 °С;
измерение расхода криогенных жидкостей с температурой до -200 °С;
при высоком, до 25 МПа, технологическом давлении в трубопроводе;
измерение расхода в трубопроводах большого диаметра (погружные вихревые расходомеры).
Жидкость при этом должна быть чистой, однофазной, с вязкостью не более 7 сП.

Измерение расхода газа и пара

В отличие от жидкостей, которые условно можно считать практически несжимаемыми средами, объем газовых сред существенно зависит от температуры и давления. Поэтому при учете количества газов оперируют объемом и расходом, приведенными либо к нормальным условиям (T = 0 °C, P = 101,325 кПа абс.), либо к стандартным условиям (Т = +20 °С, Р = 101,325 кПа абс.).

Таким образом, для измерения количества газа и пара наряду с объемным расходомером необходимы датчики давления и температуры, либо плотномер, либо массовый расходомер, а также вычислительное устройство (корректор или другой вторичный прибор с соответствующими матема­тическими функциями). При регулировании расхода газов в технологических процессах зачастую ограничиваются измерением одного лишь объемного расхода, но для точного регулирования также необходимо определять расход при нор­мальных условиях, особенно в случае значительных колебаний плотности газа.

Наиболее часто для измерения расхода газа и пара применяется метод переменного перепада давления (ППД), причем в качестве первичных преобразователей расхода традиционно используются сужающие устройства, в первую очередь – стандартная диафрагма. Основными преимуществами расходомеров ППД является беспроливная поверка, невысокая стоимость, широкий диапазон применений и большой опыт эксплуатации. Тем не менее, данный метод обладает и весьма серьезными недостатками: квадратичной зависимостью перепада давления от расхода, большими потерями давления на сужающих устройствах и жесткими требованиями к прямым участкам трубопровода. В результате в настоящее время как в России, так и во всем мире имеется четкая тенденция по замене расходомерных комплексов с сужающими устройствами на расходомеры с другими принципами измерения. Для трубопроводов малых и средних диаметров сейчас существует широкий выбор различных методов и средств измерения расхода, но для трубопроводов диаметром 300…400 мм и выше альтернатива методу ППД практически отсутствует. Избавиться от недостатков традиционных расходомеров ППД с сужающими устройствами, сохранив при этом преимущества самого метода, позволяет использование в качестве первичных преобразователей расхода осредняющих напорных трубок серии Torbar, а в качестве средств измерения перепада давления (дифманометров) – цифровых датчиков разности давления серии EJA/EJX. При этом потери давления уменьшаются в десятки и сотни раз, прямые участки сокращаются в среднем в 1,5…2 раза, динамический диапазон по расходу может достигать 1:10.

В последнее время более широкое применение для измерения расхода газа и пара находят вихревые расходомеры. По сравнению с расходомерами переменного перепада давления они обладают более широким динамическим диапазоном, меньшими потерями давления и прямыми участками. Наиболее эффективны данные приборы в задачах учета, прежде всего коммерческого, и в ответственных задачах регулирования расхода. Использование расходомера со встроенным датчиком температуры либо стандартного расходомера совместно с датчиками температуры и давления позволяет определить массовый расход среды, что особенно актуально при измерении расхода пара.

Однако данные приборы в силу особенностей своего принципа измерения не применяются для:
измерения расхода многофазных, адгезионных сред и сред с твердыми включениями;
измерения расхода сред с малыми скоростями потока.

При малых и средних скоростях потока для измерения расхода технических газов широко применяются ротаметры. Данные приборы рассчитаны на работу как с высокотемпературными, так и с коррозионно-активными средами и широко используются в различных исполнениях. Однако как указывалось выше, ротаметры монтируются только на вертикальных трубопроводах с направле­нием потока снизу вверх и не применяются при измерении расхода адгезионных сред и сред с содержанием твердых включений, в том числе абразивных.

При необходимости непосредственного измерения массового расхода газа также применяются массовые кориолисовые расходомеры. Однако при применении данных приборов измерение плотности и, соответственно, расчет объемного расхода невозможны, т. к. плотность газов ниже минимального значения диапазона измерений плотности данных расходомеров. С учетом вы­сокой стоимости данных приборов их применение рекомендуется в наиболее ответственных процессах, где критичным параметром является массовый расход среды.

Сводная таблица применения различных типов расходомеров

Тип расхода
Пар
Газы
Жидкости




Давление
измеряемой
среды



Вязкость


С меха-
ническим






Расходомеры переменного перепада
давления
O
O

O
O
X
X
O
O
O
O
Электромагнитные расходомеры
X
X X O
O
O
O
O
O
O
O
O
X X O
Вихревые расходомеры
O
O
O
X
O
X
X
X
X
X
O
O
O
O
Ультрозвуковые
расходомеры
время-пролетные
X
O
O
O
X
X
X
O
O
O
O
доплеровские
X
X
X
X
O
O
O
O
O
O
O
O
O
Ротаметры
O
O
X
O
X
O
O
O
X
X
X
O
O
O
O
Массовые кориолисовые
расходомеры
O
O
O
O
O
O
X
O
O
O
O
O
O
O
Механические счетчики
X
O
X
O
O
X
X
X
X
O
O

Современные вихревые расходомеры превосходят по характеристикам и возможностям своих предшественников, которые использовали большие тела обтекания, блокирующие 43% площади поперечного сечения трубы. В конструкции современных ультразвуковых расходомеров используются тела обтекания малого диаметра для получения большей амплитуды перемещения. В результате этого, значительно улучшены характеристики потери давления в системе и динамический диапазон прибора.

Назначение и области применения

Вихревые расходомеры-счетчики предназначены для измерения объемного и массового расхода жидкостей, газов и пара. Расходомеры состоят из блока электроники и первичного преобразователя. Блок выполнен в виде цилиндрического корпуса с отсеками для смотрового окна и разъемов. На корпусе расположены кабельные вводы и переходник для преобразователя. Применяются расходомеры для измерения и учёта расхода веществ технологических процессов в промышленности и коммунальном хозяйстве.

  • Идеально подходит для сред с высокой температурой и высокой скоростью пара
  • Производство энергии — паровые установки
  • Промышленное применение — установки ОВКВ, региональное управление энергопотреблением
  • Коммерческое применение — управление энергопотреблением зданий, студенческих городков и сооружений
  • Нефтегазовая промышленность — распределение природного газа
  • Нефтехимическая промышленность — массовая балансировка, подогрев технологических реакций

Правильный выбор датчиков напрямую влияет на финальный результат производственного круговорота, поэтому электронные расходомеры являются одним из важнейших звеньев цепи технического процесса. - это одни из самых востребованных на отечественном рынке приборов для учёта расхода веществ. Свою популярность они заслужили благодаря надёжности, простоте в эксплуатации, высокой точности измерений и, что немаловажно, своей доступности. История вихревых расходомеров начинается в 60х годах двадцатого века, но современные датчики сделали огромный шаг вперёд по сравнению со своими предками.

Что же такое вихревой расходомер и какой принцип действия

Простой пример эффекта образования вихрей - это флаг, волнующийся на ветру из-за завихрений, которые создаются движением воздуха, обтекающего флагшток. Поток измеряемого вещества проходя по внутреннему сечению арматуры расходомера, встречает на своём пути препятствие - тело обтекания, установленное в расходомере, проходя через него, увеличивает скорость, уменьшая давление. Таким образом, после преодоления препятствия создаются завихрения, называемые вихревой дорожкой Кармана. Ультразвуковой луч, генерируемый прибором, проходит через поток вихрей ниже по течению от тела обтекания. При прохождении вихрей несущая ультразвукового сигнала изменяется.

Это изменение несущей доступно для измерения и смещается пропорционально количеству образовавшихся вихрей. Цифровая обработка сигналов позволяет определить число вихрей. Эта величина преобразуется в скорость потока. Программа преобразует скорость в объемный расход в единицах измерения, выбранных оператором. В вихревых расходомерах компании используется самые маленькие тела обтекания среди расходомеров такого типа, которые обеспечивают высокую чувствительность, исключительную работоспособность при очень низких расходах. Большой динамический диапазон и низкие потери давления. При использовании встроенного термометра сопротивления и внешнего датчика давления программное обеспечение расходомера позволит скомпенсировать изменения давления и температуры для точного измерения массового расхода (расходомеры газов).

Для усиления выходного сигнала в некоторых расходомерах устанавливают несколько обтекаемых тел. Сами же тела могут иметь различные формы, например, треугольную или круглую. Одним из важнейших достоинств такого типа расходомеров является отсутствие каких-либо движущихся частей, что несомненно оказывает положительное влияние на срок службы прибора. Это одни из самых долговечных и неприхотливых приборов.

Подтипы вихревых расходомеров

Все вихревые расходомеры можно разделить на три группы по типу преобразователей.

  1. Вихревые расходомеры с обтекаемым телом - поток вещества огибает тело обтекания, установленное в трубопроводе, меняется траектория движения и увеличивается скорость струй, создаются завихрения, уменьшается давление в трубе. За миделевым сечением тела скорость снижается, а давление увеличивается. На передней стороне тела обтекания образуется повышенное давление, на задней стороне — пониженное. Образование вихрей с обеих сторон происходит поочередно. За обтекаемым телом образуется вихревая дорожка Кармана.

  2. Вихревые расходомеры с прецессией воронкообразного вихря - принцип действия заключается в том, что поток закручивается перед попаданием в более широкую часть трубы, вызывая пульсации давления. В качестве преобразователя сигнала обычно служат пьезоэлементы.

  3. Вихревые расходомеры с осциллирующей струей - в подобного рода расходомерах пульсации давления создаются специальной конструкцией самого датчика, благодаря которой струя измеряемого вещества вытекает из специально предусмотренного отверстия в корпусе расходомера и создаёт пульсации давления.

Плюсы и минусы вихревых расходомеров

Подводя итог стоит отметить плюсы и минусы вихревых расходомеров, тезисно обобщим всё о расходомеров этого типа. Вихревые расходомеры применяются для измерения объёмного и массового расхода любых жидких и газообразных сред. Приборы хорошо справляются со своими обязанностями при температурах среды до 500 градусов Цельсия и давлении до 30Мпа. Это универсальные по всем своим параметрам расходомеры, подходящие практически для любого промышленного предприятия, где нужен точный учёт расхода жидких и газообразных веществ от воды до углеводородов.

Плюсы

К положительным моментам стоит отнести: высокую стабильность показаний, точность измерений, простоту в эксплуатации, нечувствительность к загрязнениям, отсутствие подвижных частей, охватывает практически весь спектр веществ - сред измерения.

Минусы

Ну и недостатками данный прибор не обделён: обладает большой чувствительностью к вибрациям, так же при измерениях требуется значительная скорость потока, ограничение по диаметру труб не более 300мм и менее 150мм и отмечаются просадки по давлению.