Меню

Классификация нагрузок и их сочетаний. Сопротивление материалов

Расчет крыши и кровли

При решении задач сопромата внешними силами, или нагрузками, называются силы взаимодействия рассматриваемого элемента конструкции со связанными с ним телами. Если внешние силы являются результатом непосредственного, контактного взаимодействия данного тела с другими телами, то они приложены только к точкам поверхности тела в месте контакта и называются поверхностными силами. Поверхностные силы могут быть непрерывно распределены по всей поверхности тела или ее части. Величина нагрузки, приходящаяся на единицу площади, называется интенсивностью нагрузки, обозначается обычно буквой р и имеет размерность Н/м2, кН/м2, МН/м2 (ГОСТ 8 417-81). Допускается применение обозначения Па (паскаль), кПа, МПа; 1 Па = 1 Н/м2.

Поверхностная нагрузка, приведенная к главной плоскости, т. е. нагрузка, распределенная по линии, называется погонной нагрузкой, обозначается обычно буквой q и имеет размерность Н/м, кН/м, МН/м. Изменение q по длине обычно показывают в виде эпюры (графика).

В случае равномерно распределенной нагрузки эпюра q прямоугольная. При действии гидростатического давления эпюра q треугольная.

Равнодействующая распределенной нагрузки численно равна площади эпюры и приложена в ее центре тяжести. Если нагрузка распре-делена на небольшой части поверхности тела, то ее всегда заменяют равнодействующей, называемой сосредоточенной силой Р (Н, кН).

Встречаются нагрузки , которые могут быть представлены в виде сосредоточенного момента (пары). Моменты М (Н·м или кН·м) обозначают обычно одним из двух способов, или в виде вектора, перпендикулярного к плоскости действия пары. В отличие от вектора силы вектор момента изображают в виде двух стрелок или волнистой линией. Вектор момента обычно принято счи-тать правовинтовым.

Силы, не являющиеся результатом контакта двух тел, а приложенные к каждой точке объема занятого тела (собственный вес, силы инерции), называются объемными или массовыми силами.

В зависимости от характера приложения сил во времени различают нагрузки статические и динамические. Нагрузки считается статической, если она сравнительно медленно и плавно (хотя бы в течение не-скольких секунд) возрастает от нуля до своего конечного значения, я затем остается неизменной. При этом можно пренебречь ускорения-ми деформируемых масс, в следовательно, и силами инерции.

Динамические нагрузки сопровождаются значительными ускоре-ниями как деформируемого тела, так н взаимодействующих с ним тел. Возникающими при этом силами инерции пренебречь нельзя. Динамические нагрузки делятся из мгновенно приложенные, ударные в повторнопеременные.

Мгновенно приложенная нагрузка возрастает от нуля до максимума в течение долей секунды. Такие нагрузки возникают при воспламенении горючей смеси в цилиндре двигателя внутреннего сгорании, при трогании с места железнодорожного состава.

Ударная нагрузка характерна тем, что в момент ее приложения тело, вызывающее нагрузку, обладает определенной кинетической энергией. Такая нагрузка возникает, например, при забивке свай с помощью копра, в элементах кузнечного молота.

Как показывает практика, тема сбора нагрузок вызывает наибольшее количество вопросов у молодых инженеров, начинающих свою профессиональную деятельность. В данной статье хочу рассмотреть, что такое постоянные и временные нагрузки, чем длительные нагрузки отличаются от кратковременных и для чего такое разделение необходимо и т.п.

Классификация нагрузок по продолжительности действия.

В зависимости от продолжительности действия нагрузки и воздействия делятся на постоянные и временные . Временные нагрузки в свою очередь подразделяются на длительные, кратковременные и особые .

Как следует из самого названия, постоянные нагрузки действуют на всем протяжении эксплуатации. Временные нагрузки проявляются в отдельные периоды строительства или эксплуатации.

относятся: собственный вес несущих и ограждающих конструкций, вес и давление грунтов. В случае применения в проекте конструкций заводского изготовления (ригели, плиты, блоки и т.п.), нормативное значение их веса определяется на основании стандартов, рабочих чертежей или паспортных данных заводов — изготовителя. В прочих случаях вес конструкций и грунтов определяется по проектным данным на основании их геометрических размеров как произведение их плотности ρ на объем V с учетом их влажности в условиях возведения и эксплуатации сооружений.

Ориентировочные плотности некоторых основных материалов приведены в табл. 1. Ориентировочные веса некоторых рулонных и отделочных материалов приведены в табл. 2.

Таблица 1

Плотность основных строительных материалов

Материал

Плотность, ρ, кг/м3

Бетон:

— тяжелый

— ячеистый

2400

400-600

Гравий

1800

Дерево

500

Железобетон

2500

Керамзитобетон

1000-1400

Кирпичная кладка на тяжелом растворе:

— из полнотелого керамического кирпича

— из пустотелого керамического кирпича

1800

1300-1400

Мрамор

2600

Мусор строительный

1200

Песок речной

1500-1800

Раствор цементно — песчаный

1800-2000

Минераловатные теплоизоляционные плиты:

— неподвергающиеся нагрузке

— для теплоизоляции железобетонных покрытий

— в системах вентилируемого фасада

— для теплоизоляции наружных стен с последующим оштукатуривание

35-45

160-190

90

145-180

Штукатурка

1200

Таблица 2

Вес рулонных и отделочных материалов

Материал

Вес, кг/м2

Битумная черепица

8-10

Гипсокартонный лист толщиной 12,5 мм

10

Керамическая черепица

40-51

Ламинат толщиной 10 мм

8

Металлочерепица

5

Паркет дубовый:

— толщиной 15 мм

— толщиной 18 мм

— толщиной 22 мм

11

13

15,5

Рулонная кровля (1 слой)

4-5

Сэндвич — панель кровельная:

— толщиной 50 мм

— толщиной 100 мм

— толщиной 150 мм

— толщиной 200 мм

— толщиной 250 мм

16

23

29

33

38

Фанера:

— толщиной 10 мм

— толщиной 15 мм

— толщиной 20 мм

7

10,5

14

Временные нагрузки подразделяются на длительные, кратковременные и особые.

относятся:

— нагрузка от людей, мебели, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями;

— нагрузки от автотранспорта с пониженными нормативными значениями;

— вес временных перегородок, подливок и подбетонок под оборудование;

— снеговые нагрузки с пониженными нормативными значениями;

— вес стационарного оборудования (станки, моторы, емкости, трубопроводы, жидкости и твердые тела, заполняющие оборудование);

— давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разряжение воздуха, возникающее при вентиляции шахт;

— нагрузки на перекрытия от складируемых материалов и стелажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах подобных помещениях;

— температурные технологические воздействия от стационарного оборудования;

— вес слоя воды на водонаполненных плоских покрытиях;

— вертикальные нагрузки от мостовых и подвесных кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана в каждом пролете здания на коэффициент:

0,5 — для групп режимов работы кранов 4К-6К;

0,6 — для группы режима работы кранов 7К;

0,7 — для группы режима работы кранов 8К.

Группы режимов кранов принимаются по ГОСТ 25546.

относятся:

— вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования с полными нормативными значениями;

— нагрузки от автотранспорта с полными нормативными значениями;

— снеговые нагрузки с полными нормативными значениями;

— ветровые и гололедные нагрузки;

— нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

— температурные климатические воздействия с полным нормативным значением;

— нагрузки от подвижного подъемно — транспортного оборудования (погрузчиков, электрокаров, кранов — штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением).

относятся:

— сейсмические воздействия;

— взрывные воздействия;

— нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

— воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

Классификация Внешних Сил (Нагрузок) Сопромат

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки и распределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; и динамические нагрузки вызывающие большие силы инерции.

Допущения сопромата

Допущения Сопромата Сопромат

При построении теории расчета на прочность, жесткость и устойчивостьпринимаются допущения, связанные со свойствами материалов и с деформацией тела.

Допущения, связанные со свойствами материалов

Сначала рассмотрим допущения, связанные со свойствами материалов :

допущение 1 : материал считается однородным (его физико-механические свойства считаются одинаковыми во всех точках;

допущение 2 : материал полностью заполняет весь объем тела, без каких-либо пустот (тело рассматривается как сплошная среда). Это допущение дает возможность применять при исследовании напряженно-деформированного состояния тела методы дифференциального и интегрального исчислений, которые требуют непрерывности функции в каждой точке объема тела;

допущение 3 : материал изотропный, то есть его физико-механические свойства в каждой точке одинаковы во всех направлениях. Анизотропные материалы – физико-механические свойства которых изменяются в зависимости от направления (например, дерево);

допущение 4 : материал является идеально упругим (после снятия нагрузки все деформации полностью исчезают).

Допущения, связанные с деформацией

Теперь рассмотрим основные допущения, связанные с деформацией тела .

допущение 1 : деформации считаются малыми. Из этого допущения следует, что при составлении уравнений равновесия, а также при определении внутренних сил можно не учитывать деформацию тела. Это допущение иногда называют принципом начальных размеров. Например, рассмотрим стержень, заделанный одним концом в стену и нагруженный на свободном конце сосредоточенной силой (рис. 1.1).

Момент в заделке, определенный из соответствующего уравнения равновесия методом теоретической механики, равен: . Однако прямолинейное положение стержня не является его положением равновесия. Под действием силы (P) стержень изогнется, и точка приложения нагрузки сместится и по вертикали, и по горизонтали. Если записать уравнение равновесия стержня для деформированного (изогнутого) состояния, то истинный момент, возникающий в заделке, окажется равным: . Принимая допущение о малости деформаций, мы полагаем, что перемещением (w) можно пренебречь по сравнению с длиной стержня (l), то есть , тогда . Допущение возможно не для всех материалов.

допущение 2 : перемещения точек тела пропорциональны нагрузкам, вызывающим эти перемещения (тело является линейно деформируемым). Для линейно деформируемых конструкций справедлив принцип независимости действия сил (принцип суперпозиции ): результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности. В основе этого принципа лежит также предположение об обратимости процессов нагрузки и разгрузки.

1.2. Классификация внешних сил и элементов конструкций

Внешние силы, действующие на элементы конструкций," как известно из курса теоретической механики, делятся на активные и реактивные (реакции связей). Активные внешние силы принято называть Происхождение и характер действия нагрузки определяются назначением, условиями работы и конструктивными особенностями рассматриваемого элемента. Например, для приводного вала, изображенного на рис. 1.8, нагрузками являются силы, действующие на зубья колеса, и натяжения ветвей ремня, а также силы тяжести самого вала и насаженных на него деталей (зубчатого колеса и шкива).

Для стержней фермы мостового крана (рис. 1.9) основные нагрузки - силы тяжести поднимаемого груза и тележки; меньшее значение имеют силы тяжести фермы.

Основная нагрузка барабана парового котла - давление находящегося в нем пара.

В случае если рассматриваемый элемент конструкции движется с ускорением, то к числу действующих на него нагрузок относятся также силы инерции.

Силы тяжести данной части конструкции и силы инерции, возникающие при ее ускоренном движении, являются объемнымя сяламв, т. е. они действуют на каждый бесконечно малый элемент объема. Нагрузки, передающиеся от одних элементов конструкции к другим, относятся к числу поверхностных сил.

Поверхностные снлы делатся на сосредоточенные в распределенные. При этом следует помнить, что сосредоточенных сил, конечно, не существует - это абстракция, вводимая для удобства технических расчетов. Сила рассматривается как сосредоточенная, если она передается на деталь по площадке, размеры которой пренебрежимо малы в сравнении с размерами самого элемента конструкции. Например, силу давления колеса вагона на рельс можно рассматривать как сосредоточенную, так как хотя колесо и рельс в месте соприкосновения деформируются, но размеры площадки, получающейся в результате этой деформации, ничтожно малы по сравнению с размерами как рельса, так и колеса.

Нагрузки, распределенные по некоторой поверхности, характеризуются давлением, т. е. отношением силы, действующей на элемент поверхности нормально к ней, к площади данного элемента, и, следовательно, выражаются в паскалях (1 Па = = 1 Н/м~), МПа и т. д.

Во многих случаях приходится встречаться с нагрузками, распределенными по длине элемента конструкции,. например можно говорить о силе тяжести единицы длины балки, при этом если сечение балки непостоянно, то и сила тяжести единицы ее длины будет переменной.

Распределенная по длине нагрузка характеризуется интенсивностью, обозначаемой обычно q и выражаемой в единицах силы, отнесенных к единицам длины: Н/м, кН/м и т. п.

По характеру изменения во времени различают: статические нагрузки, нарастающие медленно и плавно от нуля до своего конечного значения; достигнув его, в дальнейшем не изменяются. Примером могут служить центробежные силы в период разгона и при последующем равномерном вращении какого-либо ротора;

повторные нагрузки, многократно изменяющиеся во времени по тому или иному закону. Примером такой нагрузки служат силы, действующие на зубья зубчатых колес;

нагрузки малой продолжительности, прикладываемые к конструкции сразу или даже с начальной скоростью в момент контакта (эти нагрузки часто называют динамическими или ударными). Примером ударной является, например, нагрузка, воспринимаемая деталями парового молота во время ковки.

Вопрос о связях и их реакциях достаточно подробно рассмотрен в курсе теоретической механики. Здесь ограничимся лишь напоминанием о наиболее распространенных типах связей.

Шарнирно-подвижная опора (односвязная опора) схематически изображается, как показано на рис. 1.10,а. Реакция такой опоры всегда перпендикулярна опорной поверхности.

Шарнирно-неподвижная опора (двухсвязная опора) схематически изображена на рис. 1.10,б. Реакция шарнирно-неподвижной опоры проходит через. центр шарнира, а ее направление зависит от действующих активных сил. Вместо отыскания числового значения и направления этой реакции удобнее искать отдельно две ее составляющие.

В жесткой заделке (трехсвязная опора) возникают реактивная пара сил (момент) и реактивная сила; последнюю удобнее представлять в виде двух ее составляющих (рис. 1.11).

Если связью служит стержень с шарнирами по концам (рис. 1.12), то реакция направлена вдоль его оси, т. е. сам стержень работает на растяжение или сжатие.

Формы элементов конструкций чрезвычайно разнообразны, но с большей или меньшей степенью точности каждый из них можно при расчетах рассматривать либо как брус, либо как оболочку или пластину, либо как массив.

В сопротивлении материалов в основном изучают методы расчетов на прочность, жесткость и устойчивость бруса, т. е. тела, два измерения которого невелики по сравнению с третьим (длиной). Представим себе плоскую фигуру, перемещающуюся вдоль некоторой линии таким образом, что центр тяжести фигуры находится на этой линии, а плоскость фигуры ей перпендикулярна. Полученное в результате такого движения тело и есть брус (рис. 1.13).

Плоская фигура, движением которой брус образован, является его поперечным сечением, а линия, вдоль которой перемещался ее центр тяжести,- осью бруса.

Ось бруса - это геометрическое место центров тяжести его поперечных сечений. В зависимости от формы оси бруса и того, как изменяется (или остается постоянным) его поперечное сечение, различают прямые и кривые брусья с постоянным, непрерывно или ступенчато изменяющимся поперечным сечением (рис. 1.14). В качестве некоторых примеров деталей, рассчитываемых как прямые брусья, можно указать приводной вал (см. рис. 1.8), любой из стержней фермы мостового крана (см. рис. 1.9); крюк этого крана рассчитывают как кривой брус.

Пластина и оболочка (рис. 1.15) характеризуются тем, что их толщина невелика по сравнению с остальными размерами. Пластину можно рассматривать как частный случай оболочки, так сказать, «распрямленную» оболочку. Примерами деталей, рассматриваемых как оболочки и пластины, являются различные резервуары для жидкостей и газов, элементы обшивки корпусов кораблей, подводных лодок, фюзеляжей самолетов.

Массивом называют тело, все три измерения которого - величины одного порядка, например фундамент под машину, шарик или ролик подшипника качения.

Внешние силы в сопромате делятся на активные и реактивные (реакции связей). Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки и распределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; и динамические нагрузки вызывающие большие