Меню

Солнечная радиация и её влияние на организм человека и климат. Солнечная радиация и тепловой баланс

Расчет крыши и кровли

Общая гигиена. Солнечная радиация и ее гигиеническое значение.

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие -- гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная -- это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см 2

в мин. Проходя через атмосферу солнечные лучи значительно ослабевают -- рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 -- 1,53 калории\см2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спекра -- специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим:
1) теплые тона -- желтый, оранжевый, красный. 2) холодные тона -- голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску: зеленый -- вода, красный -- пар, желтый -- газ, оранжевый -- кислоты, фиолетовый -- щелочи, коричневый -- горючие ждкости и масла, синий -- воздух, серый -- прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:

1. световой коэффициет -- характеризует собой отношение площади застекленной поверхности окон к площади пола.

2. Угол падения -- характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270.

3. Угол отверстия-- характеризует освещенность небесным светом (должен быть не менее 50). На первых этажах ленинградских домов - колодцев этот угол фактически отсутсвует.

4. Глубина заложения помещения -- это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены).

Светотехнические показатели -- это показатели определяемые с помощью прибора -- люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость -- это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки исскуственного освещения помещений иеет значение яркость, отсутсвие пульсаций, цветность и др.

Инфракрасные лучи. Основное биологическое действие этих лучей -- тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинновлонвый участок оказывает свое тепловое действие на поверхности. Это используется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор -- актинометр. Измеряется инфракрасная радиация в калориях на см2\мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям -- катаракте (помутнение хрусталика). Причиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог -- эритема. Она возникает за счет теплового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тпловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с поражением ЦНС. Солнечный удар поражает тех кто проводит много часов подряд под палящими лучами солнца с непокрытой головой. Происходит разогревание мозговых оболчек.

Тепловой удар возникает из-за перегревания организма. Он может случатся с тем кто выполняет тяжелую физическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у наших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют пираметры различных видов. В основе ох действия -- поглащение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокатном цехе нарма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения превышающие 3,7 считаются значительными и требуют проведения профилактических мероприятий -- применение защитных экранов, водянные завесы, спецодежда.

Ультрафиолетовые лучи (уф).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загарвозникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержаны рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. Световое голодание -- это длительное отсутсвие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

ЛЕКЦИЯ 2.

СОЛНЕЧНАЯ РАДИАЦИЯ.

План:

1.Значение солнечной радиации для жизни на Земле.

2. Виды солнечной радиации.

3. Спектральный состав солнечной радиации.

4. Поглощение и рассеивание радиации.

5.ФАР (фотосинтетически активная радиация).

6. Радиационный баланс.

1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.

Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

Солнечная энергия - непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них - собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры - в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая - после прорастания спор - наиболее активно проходит при повышенной освещенности.

Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня - на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

2. Виды солнечной радиации.

Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.

S количество тепла, получаемого перпендикулярной к лучу поверхностью,

ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.

СУММАРНАЯ РАДИАЦИЯ Q - состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .

Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

Свет и тепло, получаемые растениями от Солнца, - результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

Отраженная солнечная радиация. Альбедо . Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10...30 %), ис­ключение составляют снег и вода.

Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года - летом.

Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90...99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

Еэф= Е3-Еа

В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70...140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

3. Спектральный состав радиации.

Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения - от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) - к длинноволновой.

Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y < 0,40 мкм), ви­димую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра сол­нечной радиации лежит рентгеновское излучение, а за инфра­красной - радиоизлучение Солнца. На верхней границе атмос­феры на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 - на видимую и 47 % - на инфракрасную.

Радиацию, излучаемую Землей и атмосферой, называют даль­ней инфракрасной радиацией.

Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые про­цессы, но ускоряет прохождение этапов формирования репро­дуктивных органов у растений.

Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее теп­ловом эффекте, что существенно влияет на рост и развитие рас­тений.

Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.

Видимая часть солнечного спектра , во-первых, создает осве­щенность. Во-вторых, с областью видимой радиации почти со­впадает (захватывая частично область ультрафиолетовой радиа­ции) так называемая физиологическая радиация (А, = = 0,35...0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.

4. Поглощение и рассеивание радиации в атмосфере.

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.

Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.

К= добавить формулу.

Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.

Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная ради­ация, проходя через атмосферу, частично рассеивается. В чис­том и сухом воздухе интенсивность коэффициента молекуляр­ного рассеяния подчиняется закону Релея:

к= с/ Y 4 ,

где С - коэффициент, зависящий от числа молекул газа в единице объема; X - длина рассеиваемой волны.

Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как перво­начальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.

В воздухе, содержащем примеси (мелкие капельки воды, кри­сталлики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесо­ватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают сол­нечные лучи, а диффузно их отражают. В результате облака, ос­вещенные Солнцем, имеют белый цвет.

5. ФАР (фотосинтетическиактивная радиация)

Фотосинтетически активная радиация. В процессе фотосинте­за используется не весь спектр солнечной радиации, а только его

часть, находящаяся в интервале длин волн 0,38...0,71 мкм, - фо­тосинтетически активная радиация (ФАР).

Известно, что видимая радиация, воспринимаемая глазом че­ловека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.

Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья погло­щают сине-фиолетовые (X = 0,48...0,40 мкм) и оранжево-крас­ные (X = 0,68 мкм) лучи, менее - желто-зеленые (А. = 0,58...0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.

У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38...0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных, X. Г. Тоомингом и:

Qфар = 0,43 S " +0,57 D);

составлены карты распределения месячных и годовых сумм Фар на территории России.

Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

КПИфар= (сумма Q / фар/сумма Q / фар) 100%,

где сумма Q / фар - сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q / фар - сумма ФАР, поступающая на посевы за этот период;

Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые - 0,5...1,5 %; хорошие-1,5...3,0; рекордные - 3,5...5,0; теорети­чески возможные - 6,0...8,0 %.

6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

B = S / + D + Ea - Е3- Rk

Уравнение можно записать и в другом виде: B = Q - RK - Еэф.

Для ночного времени уравнение радиационного баланса име­ет следующий вид:

В = Еа - Е3, или В = -Еэф.

Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью - отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1...2 ч до захода Солнца.

Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое - положительные.

Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

* Деятельная поверхность - поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.

Земля получает от Солнца 1,36*10в24 кал тепла в год. По сравнению с этим количеством энергии остальной приход лучистой энергии на поверхность Земли ничтожно мал. Так, лучистая энергия звезд составляет одну стомиллионную долю солнечной энергии, космическое излучение - две миллиардные доли, внутреннее тепло Земли у ее поверхности равно одной пятитысячной доли солнечного тепла.
Излучение Солнца - солнечная радиация - является основным источником энергии почти всех процессов, происходящих в атмосфере, гидросфере и в верхних слоях литосферы.
За единицу измерения интенсивности солнечной радиации принимают количество калорий тепла, поглощенное 1 см2 абсолютно черной поверхности, перпендикулярной направлению солнечных лучей, за 1 минуту (кал/см2*мин).

Поток лучистой энергии Солнца, достигающий земной атмосферы, отличается большим постоянством. Его интенсивность называют солнечной постоянной (Io) и принимают в среднем равной 1,88 ккал/см2 мин.
Величина солнечной постоянной колеблется в зависимости от расстояния Земли от Солнца и от солнечной активности. Колебания ее в течение года составляют 3,4-3,5%.
Если бы солнечные лучи всюду падали на земную поверхность отвесно, то при отсутствии атмосферы и при солнечной постоянной 1,88 кал/см2*мин каждый квадратный сантиметр ее получал бы в год 1000 ккал. Благодаря тому что Земля шарообразна, это количество уменьшается в 4 раза, и 1 кв. см получает в среднем 250 ккал в год.
Количество солнечной радиации, получаемое поверхностью, зависит от угла падения лучей.
Максимальное количество радиации получает поверхность, перпендикулярная направлению солнечных лучей, потому что в этом случае вся энергия распределяется на площадку с сечением, равным сечению пучка лучей - а. При наклонном падении того же пучка лучей энергия распределяется на большую площадь (сечение в) и единица поверхности получает меньшее ее количество. Чем меньше угол падения лучей, тем меньше интенсивность солнечной радиации.
Зависимость интенсивности солнечной радиации от угла падения лучей выражается формулой:

I1 = I0 * sin h,


где I0 - интенсивность солнечной радиации при отвесном падении лучей. За пределами атмосферы - солнечная постоянная;
I1 - интенсивность солнечной радиации при падении солнечных лучей под углом h.
I1 во столько раз меньше I0, во сколько раз сечение а меньше сечения в.
На рисунке 27 видно, что a/b = sin А.
Угол падения солнечных лучей (высота Солнца) бывает равен 90° только на широтах от 23°27" с. до 23°27" ю. (т. е. между тропиками). На остальных широтах он всегда меньше 90° (табл. 8). Соответственно уменьшению угла падения лучей должна уменьшаться и интенсивность солнечной радиации, поступающей на поверхность на разных широтах. Так как в течение года и в течение суток высота Солнца не остается постоянной, количество солнечного тепла, получаемого поверхностью, непрерывно изменяется.

Количество солнечной радиации, полученное поверхностью, находится в прямой зависимости от продолжительности освещения ее солнечными лучами.

В экваториальной зоне вне атмосферы количество солнечного тепла в течение года не испытывает больших колебаний, тогда как в высоких широтах эти колебания очень велики (см. табл. 9). В зимний период различия в приходе солнечного тепла между высокими и низкими широтами особенно значительны. В летний период, в условиях непрерывного освещения, полярные районы получают максимальное на Земле количество солнечного тепла за сутки. В день летнего солнцестояния в северном полушарии оно на 36% превышает суточные суммы тепла на экваторе. Ho так как продолжительность дня на экваторе не 24 часа (как в это время на полюсе), а 12 часов, количество солнечной радиации на единицу времени на экваторе остается наибольшим. Летний максимум суточной суммы солнечного тепла, наблюдаемый около 40-50° широты, связан со сравнительно большой продолжительностью дня (большей, чем в это время на 10-20° широты) при значительной высоте Солнца. Различия в количестве тепла, получаемого экваториальными и полярными районами, летом меньше, чем зимой.
Южное полушарие летом получает больше тепла, чем северное, зимой - наоборот (влияет изменение расстояния Земли от Солнца). И если бы поверхность обоих полушарий была совершенно однородной, годовые амплитуды колебания температуры в южном полушарии были бы больше, чем в северном.
Солнечная радиация в атмосфере претерпевает количественные и качественные изменения.
Даже идеальная, сухая и чистая, атмосфера поглощает и рассеивает лучи, уменьшая интенсивность солнечной радиации. Ослабляющее влияние реальной атмосферы, содержащей водяные пары и твердые примеси, на солнечную радиацию значительно больше, чем идеальной. Атмосфера (кислород, озон, углекислый газ, пыль и водяной пар) поглощает главным образом ультрафиолетовые и инфракрасные лучи. Поглощенная атмосферой лучистая энергия Солнца переходит в другие виды энергии: тепловую, химическую и др. В общем поглощение ослабляет солнечную радиацию на 17-25%.
Молекулами газов атмосферы рассеиваются лучи с относительно короткими волнами - фиолетовые, синие. Именно этим объясняется голубой цвет неба. Примесями одинаково рассеиваются лучи с волнами различной длины. Поэтому при значительном их содержании небо приобретает белесоватый оттенок.
Благодаря рассеянию и отражению солнечных лучей атмосферой наблюдается дневное освещение в пасмурные дни, видны предметы в тени, возникает явление сумерек.
Чем длиннее путь луча в атмосфере, тем большую толщу ее он должен пройти и тем значительнее ослабляется солнечная радиация. Поэтому с поднятием влияние атмосферы на радиацию уменьшается. Длина пути солнечных лучей в атмосфере зависит от высоты Солнца. Если принять за единицу длину пути солнечного луча в атмосфере при высоте Солнца 90° (m), соотношение между высотой Солнца и длиной пути луча в атмосфере будет таким, как показано в табл. 10.

Общее ослабление радиации в атмосфере при любой высоте Солнца можно выразить формулой Буге: Im= I0*pm, где Im - измененная в атмосфере интенсивность солнечной радиации у земной поверхности; I0 - солнечная постоянная; m - путь луча в атмосфере; при высоте Солнца 90° он равен 1 (масса атмосферы), р - коэффициент прозрачности (дробное число, показывающее, какая доля радиации достигает поверхности при m=1).
При высоте Солнца 90°, при m=1, интенсивность солнечной радиации у земной поверхности I1 в р раз меньше, чем Io, т. е. I1=Io*p.
Если высота Солнца меньше 90°, то т всегда больше 1. Путь солнечного луча может состоять из кескольких отрезков, каждый из которых равен 1. Интенсивность солнечной радиации на границе между первым (aa1) и вторым (а1a2) отрезками I1 равна, очевидно, Io*р, интенсивность радиации после прохождения второго отрезка I2=I1*p=I0 р*р=I0 р2; I3=I0p3 к т. д.


Прозрачность атмосферы непостоянна и неодинакова в различных условиях. Отношение прозрачности реальной атмосферы к прозрачности идеальной атмосферы - фактор мутности - всегда больше единицы. Он зависит от содержания в воздухе водяного пара и пыли. С увеличением географической широты фактор мутности уменьшайся: на широтах от 0 до 20° с. ш. он равен в среднем 4,6, на широтах от 40 до 50° с. ш. - 3,5, на широтах от 50 до 60° с. ш. - 2,8 и на широтах от 60 до 80° с. ш. - 2,0. В умеренных широтах фактор мутности зимой меньше, чем летом, утром меньше, чем днем. С высотой он убывает. Чем больше фактор мутности, тем больше ослабление солнечной радиации.
Различают солнечную радиацию прямую, рассеянную и суммарную.
Часть солнечной радиации, которая проникает через атмосферу к земной поверхности, представляет собой прямую радиацию. Часть радиации, рассеивающаяся атмосферой, превращается в рассеянную радиацию. Вся солнечная радиация, поступающая на земную поверхность, прямая и рассеянная, называется суммарной радиацией.
Соотношение между прямой и рассеянной радиацией изменяется в значительных пределах в зависимости от облачности, запыленности атмосферы, а также от высоты Солнца. При ясном небе доля рассеянной радиации не превышает 0,1%, при облачном небе рассеянная радиация может быть больше прямой.
При малой высоте Солнца суммарная радиация почти полностью состоит из рассеянной. При высоте Солнца 50° и ясном небе доля рассеянной радиации не превышает 10-20%.
Карты средних годовых и месячных величин суммарной радиации позволяют заметить основные закономерности в ее географическом распределении. Годовые величины суммарной радиации распределяются в основном зонально. Наибольшее на Земле годовое количество суммарной радиации получает поверхность в тропических внутриконтинентальных пустынях (Восточная Сахара и центральная часть Аравии). Заметное снижение суммарной радиации на экваторе вызывается высокой влажностью воздуха и большой облачностью. В Арктике суммарная радиация составляет 60-70 ккал/см2 в год; в Антарктике вследствие частой повторяемости ясных дней и большей прозрачности атмосферы она несколько больше.

В июне наибольшие суммы радиации получает северное полушарие, и особенно внутриконтинентальные тропические и субтропические области. Суммы солнечной радиации, получаемые поверхностью в умеренных и полярных широтах северного полушария, отличаются мало вследствие главным образом большой продолжительности дня в полярных районах. Зональность в распределении суммарной радиации над. континентами в северном полушарии и в тропических широтах южного полушария почти не выражена. Лучше проявляется она в северном полушарии над Океаном и ясно выражена во внетропических широтах южного полушария. У южного полярного круга величина суммарной солнечной радиации приближается к 0.
В декабре наибольшие суммы радиации поступают в южное полушарие. Высоко лежащая ледяная поверхность Антарктиды при большой прозрачности воздуха получает значительно больше суммарной радиации, чем поверхность Арктики в июне. Много тепла в пустынях (Калахари, Большая Австралийская), но вследствие большей океаничности южного полушария (влияние высокой влажности воздуха и облачности) суммы его здесь несколько меньше, чем в июне в тех же широтах северного полушария. В экваториальных и тропических широтах северного полушария суммарная радиация изменяется сравнительно мало, и зональность в ее распределении выражена четко только к северу от северного тропика. С увеличением широты суммарная радиация довольно быстро уменьшается, ее нулевая изолиния проходит несколько севернее северного полярного круга.
Суммарная солнечная радиация, попадая на поверхность Земли, частично отражается обратно в атмосферу. Отношение количества радиации, отраженной от поверхности, к количеству радиации, падающей на эту поверхность, называется альбедо . Альбедо характеризует отражательную способность поверхности.
Альбедо земной поверхности зависит от ее состояния и свойств: цвета, влажности, шероховатости и пр. Наибольшей отражательной способностью обладает свежевыпавший снег (85-95%). Спокойная водная поверхность при отвесном падении на нее солнечных лучей отражает всего 2-5%, а при низком стоянии Солнца - почти все падающие на нее лучи (90%). Альбедо сухого чернозема - 14%, влажного - 8, леса - 10-20, луговой растительности - 18-30, поверхности песчаной пустыни - 29-35, поверхности морского льда - 30-40%.
Большое альбедо поверхности льда, особенно покрытого свежевыпавшим снегом (до 95%), - причина низких температур в полярных районах в летний период, когда приход солнечной радиации там значителен.
Излучение земной поверхности и атмосферы. Всякое тело, обладающее температурой выше абсолютного нуля (больше минус 273°), испускает лучистую энергию. Полная лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры (T):
Е = σ*Т4 ккал/см2 в мин (закон Стефана - Больцмана), где σ - постоянный коэффициент.
Чем выше температура излучающего тела, тем короче длина волн испускаемых нм лучей. Раскаленное Солнце посылает в пространство коротковолновую радиацию . Земная поверхность, поглощая коротковолновую солнечную радиацию, нагревается и также становится источником излучения (земной радиации). Ho так как температура земной поверхности не превышает нескольких десятков градусов, ее излучение длинноволновое, невидимое.
Земная радиация в значительной степени задерживается атмосферой (водяным паром, углекислым газом, озоном), но лучи с длиной волны 9-12 мк свободно уходят за пределы атмосферы, и поэтому Земля теряет часть тепла.
Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины земной, сама излучает энергию и в мировое пространство, и к земной поверхности. Атмосферное излучение, направленное к земной поверхности навстречу земному, называется встречным излучением. Это излучение, как и земное, длинноволновое, невидимое.
В атмосфере встречаются два потока длинноволновой радиации - излучение поверхности Земли и излучение атмосферы. Разность между ними, определяющая фактическую потерю тепла земной поверхностью, называется эффективным излучением. Эффективное излучение тем больше, чем выше температура излучающей поверхности. Влажность воздуха уменьшает эффективное излучение, сильно снижают его облака.
Наибольшее значение годовых сумм эффективного излучения наблюдается в тропических пустынях - 80 ккал/см2 в год - благодаря высокой температуре поверхности, сухости воздуха и ясности неба. На экваторе, при большой влажности воздуха, эффективное излучение составляет всего около 30 ккал/см2 в год, причем величина его для суши и для Океана очень мало отличается. Наименьшее эффективное излучение в полярных районах. В умеренных широтах земная поверхность теряет примерно половину того количества тепла, которое она получает от поглощения суммарной радиации.
Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и задерживать длинноволновое излучение Земли называют оранжерейным (парниковым) эффектом. Благодаря оранжерейному эффекту средняя температура земной поверхности составляет +16°, при отсутствии атмосферы она была бы -22° (на 38° ниже).
Радиационный баланс (остаточная радиация). Земная поверхность одновременно получает радиацию и отдает ее. Приход радиации составляют суммарная солнечная радиация и встречное излучение атмосферы. Расход - отражение солнечных лучей от поверхности (альбедо) и собственное излучение земной поверхности. Разность между приходом и расходом радиации - радиационный баланс, или остаточная радиация. Величина радиационного баланса определяется уравнением

R = Q*(1-α) - I,


где Q - суммарная солнечная радиация, поступающая на единицу поверхности; α - альбедо (дробь); I - эффективное излучение.
Если приход больше расхода, радиационный баланс положительный, если приход меньше расхода, баланс отрицательный. Ночью на всех широтах радиационный баланс отрицательный, днем до полудня - положительный везде, кроме высоких широт зимой; после полудня - снова отрицательный. В среднем за сутки радиационный баланс может быть как положительным, так и отрицательным (табл. 11).


На карте годовых сумм радиационного баланса земной поверхности видно резкое изменение положения изолиний при переходе их с суши на Океан. Как правило, радиационный баланс поверхности Океана превышает радиационный баланс суши (влияние альбедо и эффективного излучения). Распределение радиационного баланса в общем зонально. На Океане в тропических широтах годовые величины радиационного баланса достигают 140 ккал/см2 (Аравийское море) и не превышают 30 ккал/см2 у границы плавучих льдов. Отклонения от зонального распределения радиационного баланса на Океане незначительны и вызываются распределением облачности.
На суше в экваториальных и тропических широтах годовые значения радиационного баланса изменяются от 60 до 90 ккал/см2 в зависимости от условий увлажнения. Наибольшие годовые суммы радиационного баланса отмечаются в тех районах, где альбедо и эффективное излучение сравнительно невелики (влажные тропические леса, саванны). Наименьшим их значение оказывается в очень влажных (большая облачность) и в очень сухих (большое эффективное излучение) районах. В умеренных и высоких широтах годовая величина радиационного баланса уменьшается с увеличением широты (влияние уменьшения суммарной радиации).
Годовые суммы радиационного баланса над центральными районами Антарктиды отрицательны (несколько калорий на 1 см2). В Арктике значения этих величин близки к нулю.
В июле радиационный баланс земной поверхности в значительной части южного полушария отрицательный. Линия нулевого баланса проходит между 40 и 50° ю. ш. Наивысшее значение величины радиационного баланса достигают на поверхности Океана в тропических широтах северного полушария и на поверхности некоторых внутренних морей, например Черного (14-16 ккал/см2 в мес.).
В январе линия нулевого баланса расположена между 40 и 50° с. ш. (над океанами она несколько поднимается к северу, над материками - спускается к югу). Значительная часть северного полушария имеет отрицательный радиационный баланс. Наибольшие величины радиационного баланса приурочены к тропическим широтам южного полушария.
В среднем за год радиационный баланс земной поверхности положителен. При этом температура поверхности не повышается, а остается приблизительно постоянной, что можно объяснить только непрерывным расходованием излишков тепла.
Радиационный баланс атмосферы складывается из поглощенной ею солнечной и земной радиации, с одной стороны, и атмосферного излучения - с другой. Он всегда отрицателен, так как атмосфера поглощает лишь незначительную часть солнечной радиации, а излучает почти столько же, сколько и поверхность.
Радиационный баланс поверхности и атмосферы вместе, как целого, для всей Земли за год равен в среднем нулю, но по широтам он может быть и положительным и отрицательным.
Следствием такого распределения радиационного баланса должен быть перенос тепла в направлении от экватора к полюсам.
Тепловой баланс. Радиационный баланс - важнейшая составляющая теплового баланса. Уравнение теплового баланса поверхности показывает, как преобразуется на земной поверхности поступающая энергия солнечной радиации:

где R - радиационный баланс; LE - затраты тепла на испарение (L - скрытая теплота парообразования, E - испарение);
P - турбулентный теплообмен между поверхностью и атмосферой;
А - теплообмен между поверхностью и нижележащими слоями почвогрунта или воды.
Радиационный баланс поверхности считается положительным, если радиация, поглощенная поверхностью, превышает потери тепла, и отрицательным, если она не восполняет их. Все остальные члены теплового баланса считаются положительными, если за их счет происходит потеря тепла поверхностью (если они соответствуют расходу тепла). Так как. все члены уравнения могут изменяться, тепловой баланс все время нарушается и снова восстанавливается.
Рассмотренное выше уравнение теплового баланса поверхности приближенное, так как в нем не учтены некоторые второстепенные, но в конкретных условиях приобретающие важное значение факторы, например выделение тепла при замерзании, его расход на таяние и др.
Тепловой баланс атмосферы складывается из радиационного баланса атмосферы Ra, тепла, поступающего от поверхности, Pа, тепла, выделяющегося в атмосфере при конденсации, LE, и горизонтального переноса тепла (адвекции) Aа. Радиационный баланс атмосферы всегда отрицателен. Приток тепла в результате конденсации влаги и величины турбулентного теплообмена - положительны. Адвекция тепла приводит в среднем за год к переносу его из низких широт в высокие: таким образом, она означает расход тепла в низких широтах и приход в высоких. В многолетнем выводе тепловой баланс атмосферы можно выразить уравнением Ra=Pa+LE.
Тепловой баланс поверхности и атмосферы вместе, как целого, в многолетнем среднем равен 0 (рис. 35).

За 100% принята величина солнечной радиации, поступающей к атмосфере за год (250 ккал/см2). Солнечная радиация, проникая в атмосферу, частично отражается от облаков и уходит обратно за пределы атмосферы - 38%, частично поглощается атмосферой - 14% и частично в виде прямой солнечной радиации достигает земной поверхности - 48%. Из 48%, дошедших до поверхности, 44% ею поглощаются, а 4% отражаются. Таким образом, альбедо Земли составляет 42% (38+4).
Поглощенная земной поверхностью радиация расходуется следующим образом: 20% теряются через эффективное излучение, 18% затрачиваются на испарение с поверхности, 6% - на нагревание воздуха при турбулентном теплообмене (итого 24%). Расход тепла поверхностью уравновешивает его приход. Тепло, полученное атмосферой (14% непосредственно от Солнца, 24% от земной поверхности), вместе с эффективным излучением Земли направляется в мировое пространство. Альбедо Земли (42%) и излучение (58%) уравновешивают поступление солнечной радиации к атмосфере.

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.