Меню

Равновесие по Нэшу. Теория игр для экономистов (Джон Нэш)

Дополнительные элементы крыши

Равновесие Нэша – это часть теории игр, её автором выступил американский математик Джон Нэш. Эта теория демонстрирует оптимальную игру «в вакууме»: когда ставить олл-ин или коллировать пуш оппонентов. Важно понимать, что пуша/колла по Нэшу в современных покерных реалиях уже не является единственно верной. Она является оптимальной только при условии, если ваши оппоненты знают об этой стратегии и придерживаются её без отклонений.

Оптимально использовать стратегию пуш/фолда по Нэшу можно только против сильных и понимающих игроков. При минимальном отклонении эффективность этой стратегии значительно снижается. Наиболее выгодным вариантом использования равновесия Нэша является подстройка под оппонентов, и коррекция собственной игры на основе диапазонов соперников.

Где использовать равновесие Нэша?

Диапазоны равновесие Нэша подходят для игры в , Sit&Go и турнирах . Применять эту стратегию следуют, когда ваш стек опускается до 15 больших блайндов или ниже, и ваша игра сводится к одним пуш/фолд решениям. Чтобы отточить свое мастерство игры, вам следует использовать специальное программное обеспечение, которое моделирует такие ситуации: и ICMIZER.

Предположим, что ваш оппонент идет олл-ин, а у вас осталось 14 больших блайндов. По равновесию Нэша, вы можете коллировать с широким диапазоном рук, имея 20 BB, включая карманные тройки, QJ, QT и даже K2s.

Но это диапазон «в вакууме», который не учитывает тип турнира, стадию и разницу в выплатах. Эта стратегия является верной, но только при условии, что игра состоит только из двух решений префлоп: пуш или фолд. В современных реалиях сильные игроки способны сыграть глубокую постфлоп раздачу и со стеком в 15 больших блайндов.

Помимо использования равновесия Нэша, вы всегда можете просто подождать хорошей руки и заколлировать противника. Но если вы точно не знаете, что является хорошей рукой относительно размера вашего стека, то ориентируйтесь на таблицы Нэша.

Диапазон пуша Нэшу

Диапазон колла по Нэшу

Зеленый цвет – эффективный стек от 15 до 20 больших блайндов.

Желтый и темно-желтый цвет – эффективный стек от 6 до 14 больших блайндов.

Красный цвет – эффективный стек от 1 до 5 больших блайндов.

Использование в своей игре равновесия Нэша подойдет игрокам, поскольку предоставит первоначальное понимание о диапазонах пуша или колла для стандартных турнирных ситуаций и поможет достаточно быстро начать покером.

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, которые принимают фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы стремятся сговориться, тогда как на других агрессивно конкурируют; использующие фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия спроса или издержек или когда новые конкуренты вторгаются на рынок и т.

Первыми провели исследование в области теории игр Дж.-Ф. Нейман и О. Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944). Они распространили математические категории этой теории на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирование в игре (на рийку), коалиционных соглашений и тому подобное.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - "игра с нулевой суммой", предусматривающий такой выигрыш, который состоит исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общая сумма пользы и потерь всегда равна нулю. Вторая категория - "игра с плюсовой суммой", когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. Иногда он образуется за счет наличия "выходного" (термин из карточной игры в бридж, который означает одного из игроков, который, делая ставку, не участвует в игре), совсем пассивного и часто является служащим объектом эксплуатации. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, "стремится максимально повысить функцию, переменные которой ним не контролируются". Если все игроки являются умелыми, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои намерения, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе. Многое зависит и от "контрхитрости".

Большое значение во время игры имеет рациональное поведение игрока, т.е. продуманные выбор и осуществление оптимальной стратегии. Важный вклад в разработку формализованного (в виде моделей) описания конфликтных ситуаций, особенно в определении "формулы равновесия", т.е. устойчивости решений противников в игре, внес американский ученый Дж.-Ф. Нэш.

Нэш Джон Форбс родился в 1928 г.. (Г.. Влуефилд, США). Учился в университете Карнеги-Меллона по специальности инженера-химика, освоил курс "международная экономика". Получил диплом бакалавра и одновременно магистра математики.

В 1950 г.. В ИИриястонському университете защитил докторскую диссертацию на тему "некооперативных игры". Начиная с 1951г. И на протяжении почти восьми лет Нэш работал преподавателем Массачусетского технологического института, проводя одновременно активную научно-исследовательскую деятельность.

С весны 1959 ученый заболел и потерял работоспособность. В 70-е годы он смог вернуться к своим математических увлечений, однако производить научные результаты ему было трудно. Нобелевский комитет в 1994 фактически наградил труд, написанная в 1949

Член Национальной академии наук США, Бконометричного общества и Американской академии искусств и академии наук.

Досконально изучив различные игры, создав серию новых математических игр и наблюдая за действиями участников в различных игровых ситуациях, Нэш пытался глубже понять, как функционирует рынок, как компании принимают связаны с риском решения, почему покупатели действуют именно определенным образом. В экономике, как и в игре, руководители фирм должны учитывать не только последний, но и предыдущие шаги конкурентов, а также обстановку на всем экономическом (игровом, например, шахматном) поле и многие другие важные факторы.

Субъекты экономической жизни - активно действующие его участники, которые на рынке в условиях конкуренции идут на риск, и он должен быть оправдан. Поэтому каждый из них, как игрок, должен иметь свою стратегию. Именно это имел в виду Нэш, когда разрабатывал метод, который впоследствии назвали его именем (равновесие Нэша).

Свое понимание стратегии как основного понятия теории игр Дж.-Ф. Нэш разъясняет на основе "игры с нулевой суммой" (он называет это "симметричной игрой"), когда каждый участник имеет определенное число стратегий. Выигрыш каждого игрока зависит от того, какие стратегии выбрал и он, и его противник. На основании этого строится матрица для нахождения оптимальной стратегии, которая за многократного повторения игры обеспечивает этому игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш). Поскольку игроку неизвестно, какую стратегию выберет противник, ему самому лучше (рационально) выбрать стратегию, которая рассчитана на худшую для него поведение противнике (принцип так называемого "гарантированного результата"). Действуя осторожно и считая противника сильным конкурентом, наш игрок выберет для каждой своей стратегии минимально возможный выигрыш. Затем из всех минимально выигрышных стратегий он выберет такую, которая обеспечит максимальный из всех минимальных выигрыш - максимин.

Но и противник, вероятно, подумает аналогично. Он найдет для себя наибольшие проигрыши во всех стратегиях игрока, а затем из этих максимальных проигрышей выберет минимальный - минимакс. В случае равенства максимина мини Максу решения игроков будут устойчивыми, а игра будет иметь равновесие. Устойчивость (равновесие) решений (стратегий) состоит в том, что отходить от выбранных стратегий будет невыгодно для обоих участников игры. В случае, когда максимин не равна минимакса, решения (стратегии) обоих игроков, если они сколько-нибудь угадали выбор стратегии противника, оказываются неустойчивыми, невривно-важен.

Общее краткое определение равновесия Нэша - результат, в котором стратегия каждого из игроков является лучшей среди других, принятых остальными участниками игры стратегий. Это определение основывается на том, что ни один из игроков изменением собственной роли не может достичь наибольшей пользы (максимизации функции полезности), если остальные участники твердо придерживаются своей линии поведения.

Свою формулу равновесия Дж.-Ф. Нэш многократно усилил, включив в нее как незаменимый фактор для выработки стратегий показатель оптимального объема информации. Этот показатель оптимальности он вывел из анализа ситуаций (1) с полным информированием игрока о своих противников и (2) с неполным информированием о них. Переведя этот постулат с математического языка на язык экономической, Нэш ввел неуправляемые переменные рыночных отношений как важный информационный элемент знания условий внешней среды. После этого равновесие Нэша стала методом, используется практически во всех отраслях экономической науки для лучшего понимания сложных взаимосвязей, - отметил в октябре 1994 во время объявления новых лауреатов Нобелевской премии по экономике А. Линдбек, член Шведской королевской академии и председатель Нобелевского комитета по экономике.

Применение равновесия Нэша стало важным шагом в микроэкономике. ее использование способствовало углубленному пониманию развития и функционирования рынков, обоснованию стратегических решений, принимаемых менеджерами различных фирм. Равновесием Нэша можно пользоваться при изучении процесса ведения политических переговоров и экономического поведения, в том числе на олигополистических рынках.

По пионерной анализ равновесия в некооперативных играх Нобелевская премия по экономике 1994 года было присуждена Дж.-Ф. Нэш в, Р. Селтену и Дж. Харшани. Начиная с классического труда Дж. Неймана и О. Моргенштер-на "Теория игр и экономическое поведение", неотъемлемой частью экономического анализа стало исследование стратегии взаимодействия экономических субъектов в условиях, когда для выработки собственной линии поведения необходимо учитывать действия другого суб " объекта (как это происходит, в частности, в шахматах, преферансе и других играх). Эти трое Нобелевских лауреатов внесли большой вклад в ответвление теории игр - теорию некооперативных игр (то есть игр, когда достигнута договоренность между участниками). Принципиальным моментом этой теории является концепция равновесия, используется для предсказания результатов взаимодействия.

Равновесие Нэша стала фундаментальным понятием теории игр.

Анализ дискретного выбора

К последней четверти ХХ в. доминировало мнение, что основную роль в поведении потребителей играют здравый смысл и расчет. Именно с учетом прежде всего здравого смысла потребителей сформулированы либеральные экономические теории. Экономисты этого научного направления считают, что рынок как система отношений между экономическими субъектами способен саморегулироваться и устанавливать справедливые цены на товары и услуги на основе здравого смысла.

Хотя либеральная экономическая школа дала миру больше научных достижений, чем конкурентная консервативна, однако ее теории имеют ограниченное применение, что признают и ее сторонники. Например, монетарнсты (они же либералы) пока не сумели аргументированно объяснить поведение инвесторов на международных финансовых рынках и огромные колебания цен на мировые сырьевые ресурсы.

Либеральный рыночный подход оказался слишком упрощенным для надежного прогнозирования потребительского спроса на услуги и товары в условиях, когда потребители имеют огромный выбор подобных товаров и при этом не ограничены в объемах закупок, поскольку сейчас в развитых странах чрезвычайно распространен потребительский кредит. Кроме того, либеральная теория не может объяснить, например, покупку американской семьей (или английском семьей) американского (или английского) автомобиля, в то время как корейский стоит дешевле. То есть эта теория не принимает во внимание национальные и другие особенности поведения потребителей, которые с точки зрения здравого смысла трудно объяснить.

Поэтому в последнее время ученые-екоярмисты все чаще говорят о появлении новой экономической теории, сложившейся непосредственно на основе данных о поведении потребителей, которую надо изучать с помощью статистических методов. Эта теория предлагает описание способа измерения полезности. Несмотря на то, что подобные оценки носят субъективный характер, именно субъективность определяет их ценность для реализации экономической политики. Многие экономисты даже прогнозируют, что именно теория поведения потребителей (известный автор - Д. - Л. Мак-Федден) будет в XXI в. основой для определения экономической и политической стратегии развитых государств.

Мак-Федден ДаниельЛитл родился в 1937г. (г.. Ралейг, штатГОвн.Каролина, США). Учился и работал в Миннесотского университете. В 1962 г.. Защитил докторскую диссертацию, работал ассистентом профессора экономики в Питсбургском университете, затем профессором экономики в Калифорнийском университете, где с 1991 г.. Руководит эконометрической лабораторией.

Опубликовал в соавторстве такие труды: "Очерки об экономическом поведении в условиях нестабильности" (1974), "Спрос на городское передвижения: поведенческий анализ" (1976), "Экономика производства: двойной подход к теории и практики" (1978), "Структурный анализ дискретных данных с економетричяимы приложениями "(1981)," Мик-роекономичне моделирования и численный анализ: исследование спроса в коммунальном хозяйстве "(1984)," Справочник по эконометрики "(т.4,1994), а также много научных статей.

В течение 1983-1984 гг. Был вице-президентом, а в 1985 г.. - Президентом Эконометрического общества. У1994 г.. Избирался вице-президентом Американской экономической ассоциации. Член Национальной академии наук США, Американских эконометрического общества и академий искусств и наук, Американская экономическая ассоциация наградила его медалью Дж.-Б. Кларка, Эконометрическое общество - медалью Р. Фриша.

Известно, что довольно часто микроданные отражают дискретные выборы - выборы среди конечного множества альтернативных решений. В экономической теории традиционный анализ спроса предусматривал, что индивидуальный выбор должен быть представлен непрерывной переменной, но такая трактовка не соответствует изучению поведения дискретного выбора. Предыдущими достижениями многих ученых эмпирические исследования таких выборов не были обоснованными в экономической теории.

Методология анализа дискретного выбора Д.-л. Мак-Феддена коренится в микроэкономической теории, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности - это способы описания потребительского выбора: если выбран набор услуг X при том, что набор услуг В доступен, то X должен иметь большую полезность, чем В. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение. Очевидно, что невозможно исследовать весь комплекс фактов влияния на выбор индивида, но анализ динамики изменений среди личностей с примерно одинаковыми характеристиками позволяет сделать достаточно объективные выводы.

Д.-л. Мак-Федден в сотрудничестве с Т, Домеником изучил поведение потребителей относительно регулярных транспортных поиздок1. В большинстве крупных городов у лиц, осуществляющих регулярные транспортные поездки, есть выбор: пользоваться общественным транспортом или ездить на работу автомобилем. Каждую из этих альтернатив можно рассматривать как набор различных характеристик: время нахождения в пути, время ожидания, имеющихся расходов, комфорта, удобства и тому подобное. Таким образом, можно обозначить продолжительность времени нахождения в пути для каждого рода поездки через х {, продолжительность времени ожидания для каждого вида поездки через х 2 и т. Д.

Если (хх, х2, Хя) представляет значение п различных характеристик автомобильных поездок, а (y1, y2 ... .. y п) - значения характеристик поездок на автобусе, то можно рассмотреть модель, в которой потребитель принимает решение о том, поехать ему автомобилем или автобусом, исходя из предпочтения одного набора указанных характеристик другому. Конкретнее можно предположить, что преимущества среднего потребителя в отношении указанных характеристик могут быть представлены функцией полезности вида:

где коэффициенты b и, b 2 i т. Д - неизвестные параметры. Любое монотонное преобразование этой функции полезности может описать потребительский выбор, однако с точки зрения статистики работать с линейной функцией значительно легче.

Предположим, что существует группа похожих по характеристикам потребителей, которые выбирают, поехать автомобилем или автобусом, основываясь при этом на конкретных данных о продолжительности времени поездок, о расходах и другие характеристики поездок, с которыми они сталкиваются. В статистике есть технические приемы, которые можно использовать для поиска значений коэффициентов Д, при и - 1, п, наиболее подходящие для исследовательской структуры выбора, осуществленного данной множественностью потребителей. Эти технические приемы статистики позволяют вывести оценочную функцию полезности для различных способов транспортного передвижения.

Мак-Федден и Доменик предложили функцию полезности вида:

где ТW - общее время ходьбы до автобуса или автомобиля или от него; ТТ - общее время поездки в минутах; С - общая стоимость поездки в долларах.

С помощью оценочной функции полезности удалось правильно описать выбор между автомобильным и автобусным транспортом для 93% домохозяйств взятой авторами выборки. Коэффициенты при переменных в изложенном уравнении показывают предельную полезность каждой такой характеристики. Отношение одного коэффициента к другому показывает предельную норму замещения одной характеристики другой. Например, отношение предельной полезности времени ходьбы пешком к предельной полезности общей продолжительности поездки указывает не то, что рядовой потребитель считает время ходьбы пешком примерно в 3 раза медленнее, чем время поездки. То есть потребитель был бы готов затратить 3 дополнительных минуты на поездку, чтобы сэкономить 1 минуту ходьбы пешком. Аналогично отношение стоимости поездки в общей продолжительности поездки указывает на выбор рядового потребителя относительно этих двух переменных. В исследовании рядовой пассажир оценивал минуту времени поездки на транспорте в 0,0411 х х 2,24 = 0,0183 долл. за минуту, что составляет 1,10 долл. в час. (Для сравнения - часовая зарплата среднего пассажира в 1967 г.. Составляла в сена 2,85 долл. В час.)

Такие оценочные функции полезности могут быть ценными для определения того, следует осуществлять какие-то изменения в системе общественного транспорта. Например, в приведенной выше функции полезности одним из важных факторов, объясняющих, чем руководствуются потребители в своем выборе, является продолжительность поездки. Городское управление транспортом могло бы при небольших затратах увеличить количество автобусов, чтобы сократить эту общую продолжительность поездки, но необходимо выяснить дополнительное количество пассажиров оправдает рост затрат.

Оперируя функцией полезности и выборке потребителей, можно сделать прогноз относительно того, какие потребители захотят совершать поездки автомобилем, а какие предпочтут автобуса. Это позволит получить некоторое представление о том, будет ли выручка достаточной для покрытия дополнительных расходов. Кроме того, можно использовать предельную норму замещения для формирования представления об оценке каждым потребителем сокращения времени поездок. По результатам исследования Мак-Феддена и Доменика рядовой пассажир в 1967 оценивал время поездки по ставке 1,10 долл. в час, он готов был заплатить 37 центов, чтобы сократить время поездки на 20 минут. Это число показывает степень выигрыша в долларах от более своевременного предоставления автобусных услуг. Наличие количественной меры выигрыша, безусловно, способствует принятию рациональных решений в сфере транспортной политики.

Еще один весомый вклад Мак-Феддена - это развитие в 1974 так называемого анализа условного логит. Модель предполагает, что каждый человек в жизни находится перед рядом альтернатив. Обозначим как X характеристики, связанные с каждой альтернативой, и как 2 характеристики лиц, исследователь может наблюдать с помощью имеющихся данных. Например, для изучения выбора способа путешествий, где альтернативой может быть автомобиль, автобус или метро, X может включать информацию относительно времени и расходов, тогда как X мог бы включать данные относительно возраста, дохода и образования. Но различия между индивидами и альтернативы папке, как между Х \%, хотя они незаметны исследователю, но именно они определяют индивидуальный максимально полезный выбор. Такие характеристики представлены случайными векторами ошибок. Мак-Федден предположил, что эти случайные ошибки имеют определенную статистическую дистрибуцию (распределение) среди населения, назвав ее дистрибуцией экстремального значения. В этих условиях (плюс некоторые технические предсказания) он продемонстрировал, что вероятность того, что лицо и выберет альтернативу /, может быть записана в виде многочленов логит-модели:

где e - основание натурального логарифма; b и b - параметры (векторы). В своей базе данных исследователь может наблюдать переменные X и Z фактически так, как индивид выбирает альтернативу. В результате ученый способен оценить параметры р и <5, использовав известные статистические методы. Мак-Федденивське дифференцировки логит-модели осталось новацией и признается фундаментальным достижением.

Модели обычно используются в исследованиях спроса на городские перевозки. Они также могут применяться на транспорте, когда планируется изучить эффективность политических мер, а также социальных реформ или изменений окружающей среды. Например * эти модели могут объяснить, как изменения в цене товаров улучшают их доступность, влияют они на демографическую ситуацию, на объемы путешествия, используя альтернативные способы передвижения. Модели также приемлемые для многих других сфер, в частности, в исследованиях выбора жилого помещения, места жительства или образования. Мак-Федден использовал разработанные методы для анализа многих социальных проблем, таких как спрос на бытовую энергию, телефонные услуги и обеспечение жильем людей пожилого возраста и тому подобное.

В результате своих исследований ученый пришел к выводу, что условные логит-модели имеют определенную особенность относительно вероятности выбора между двумя альтернативами, например путешествия автобусом или поездом, независимыми от цены других вариантов передвижения. Эта особенность, названная независимостью несвязанных альтернатив (ННА), нереалистично для статистического потребления. Д.-л. Мак-Федден изобрел не только статистические тесты для установления соответствия ННА, но и предложил общие модели, названные заключенным логит-моделями, которые предусматривают, что выборы индивидов могут быть сделаны в определенной последовательности. Например, при исследовании решений, касающихся места жительства и типа жилья, принято, что гражданин сначала выбирает микрорайон, а затем - тип жилого помещения.

Даже с этими обобщениями модели весьма чувствительны к определенным предсказаний относительно дистрибуции ненаблюдаемых характеристик среди населения. В течение последнего десятилетия Д.-л. Мак-Федден разработал имитационные модели (методы моделируемых моментов) для статистической оценки дискретного выбора моделей, которые допускают гораздо более основных предположений. Мощные компьютеры расширили практическую приспособленность этих численных методов. В результате дискретные выборы индивидов теперь могут быть описаны более реалистично, а их решения - предусмотрены точнее. На основе своей новой теории Мак-Федден разработал микроеконометрични модели, которые могут использоваться, например, для предсказания намерений той части населения, которая будет выбирать различные альтернативы. За развитие методики формального обработки индивидуальных статистических и экономических данных Мак-Феддена отмечено Нобелевской премией.

Д.-л. Мак-Федден в 60-е годы также изобрел эконометрические методы оценки производственной технологии и исследовал факторы, косвенно влияют на потребность фирмы в капитале и в рабочей силе. В течение 90-х лет талантливый ученый научно развил экономику природопользования, обогатил методическую литературу по оценке стоимости природных богатств, в частности исследовал потери общественного богатства вследствие нанесенных в 1989 г.. Убытков окружающей среде нефтяным пятном, движущейся от пострадавшего в аварии танкера "Exxon Valdez * вдоль побережья Аляски.

Лейтмотивом исследований профессора Д.-л. Мак-Феддена е попытки объединить экономическую теорию, статистические и эмпирические методы для решения с их помощью социальных проблем. Его научные разработки также помогают социологам и политикам оценить выбор голосующих, исходя из змьн в их доходах и др.

Мак-Федден первым предложил методологию анализа дискретного выбора, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности представляют собой способы описания потребительского выбора. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение.

Определение 2.10. Пусть задана игра G в нормальной форме (N,Sj , Исход s = (s, s 2 > > %)е5 называется равновесием

Нэша (NE - Nash Equilibrium) игры G, если Vi е 1.....N, Уу, е 5,

Иначе говоря, каждый из игроков максимизирует свою функцию полезности

на множестве своих стратегий.

В точке равновесия Нэша стратегия х,- - одна из лучших для игрока i стратегий в ответ на х_ ; =(х 1 ,х 2 ,--.,^_ 1 ,х 1+1 ,...,х лг) - стратегии остальных игроков. Игрок i рассматривает стратегии из х_ ; как заданную вполне определенную совокупность стратегий «внешнего мира», на которую он не может активно воздействовать. Он может активно выбирать лишь свою стратегию в, которая будет наилучшим выбором, если остальные игроки выберут s_j. При этом игрок i полагает, что аналогично выбирают свои стратегии и все остальные игроки.

В точке равновесия Нэша игроку i невыгодно в одиночку отклоняться от стратегии s it если остальные игроки придерживаются стратегий 5 1 ,s 2 ,...s,-_ 1 ,s i+1 ...s N . Действия «в одиночку» могут только уменьшить выигрыш игрока i. Поиск точки равновесия Нэша, таким образом, сводится к решению системы из N задач максимизации функций полезности по соответствующим переменным

Пусть G - (N, 5,-, Uj , i - 1,..N) - конечная игра в нормальной форме.

Назовем X,- множеством смешанных стратегий игрока i, а множество X = X,-Х 2 -...-X jV - множеством профилей всех смешанных стратегий. Обозначим аеХ - элементы этого множества.

Назовем игру G = (N; X; и) смешанным расширением игры G. Тогда равновесие в смешанных стратегиях в игре G - это равновесие Нэша в ее смешанном расширении.

Пример 2.17. Задана биматричная игра

Какие выигрыши будут у игроков при выборе ими стратегий т = 0 + 0,и п = 0,25с + 0,75d ?

Решение

Запишем рядом с чистыми стратегиями вероятности их выбора:

Поскольку выбор стратегий осуществляется игроками независимо, вероятность профиля (а; с) равна 0,4-0,25 = 0,1. Аналогично рассчитываются вероятности выигрышей игроков при остальных наборах чистых стратегий. Для удобства выигрыши игроков представим в виде вектор-столбца:

Ответ: щ - 2; и 2 = 0,25.

Наряду с равновесием Нэша введем еще одно важное понятие - доминирования по Парето.

Пусть задана игра в нормальной форме G = (N,Si, u it i = l,...,N). Рассмотрим два профиля стратегий x = (x,x 2 ,...,x jY)e5 и i/ = (i/ v i/ 2 ,...,yy)&S.

Определение 2.11. Профиль стратегий х доминирует по Парето профиль стратегий у, если

Последняя система неравенств означает, что для всех игроков профиль х не хуже, чем профиль у, но при этом хотя бы для одного из игроков профиль х лучше, чем у.

Определение 2.12. Профиль стратегий х называется оптимальным по Парето (Парето-оптимальным), если он недоминируем но Парето.

Если исход оптимален но Парето, то он характеризуется следующим свойством: невозможно улучшить положение ни одного из игроков без ухудшения положения хотя бы одного из других игроков.

Пример 2.18. Найти точки равновесия Нэша, точки равновесия в строго доминирующих стратегиях и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, ни одна из стратегий не является строго доминируемой. Поэтому равновесия в строго доминирующих стратегиях нет.

Для определения равновесий Нэша подчеркнем наибольшие выигрыши каждого из игроков при фиксированных ходах противника:

Исходы с двойными подчеркиваниями будут равновесиями Нэша: (a; d) (b; с); (b;d ).

Для определения Парето-оптимальных исходов удобно изобразить все точки биматричной игры в критериальной плоскости (рис. 2.21 - по осям откладываем выигрыши игроков).


Рис. 2.21

Парето-оптимальными являются точки, в направлении штриховки от которых (к «северо-востоку») нет других точек. Таковыми являются исходы (а ; d) (а; с); (Ь; с). Введем для краткости обозначения для Парето- оптимальных точек - Р и для равновесных по Нэшу - N. Получим

Выясним, существуют ли в этой игре равновесные по Нэшу профили смешанных стратегий.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии с и d - с вероятностями q и 1 - q.

Максимизируем функцию щ(р, q) = 3q - 2pq по переменной р е при постоянном значении q

К аналогичному результату приводит рассмотрение рационального поведения второго игрока, оптимизирующего u 2 (p,q ) по переменной q при постоянном значении р

Изобразим полученный результат (рис. 2.22) в координатах (q, р ):

Рис. 2.22

Как видим, оба графика совпали.

Равновесия Нэша:

Пример 2.19. Найти точки равновесия Нэша (в смешанных стратегиях) и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, доминирующих стратегий в игре нет. Точек равновесия Нэша в чистых стратегиях также нет. Парето-оптимальные профили: (а ; d) и {b d).

Рассмотрим смешанные стратегии игроков.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии cud - с вероятностями q и 1 - q. Запишем матрицу ожидаемых выигрышей первого и второго игроков:

Очевидно, первый игрок решает задачу

Решением задачи является

Эти три случая представлены на рис. 2.23.

Рис. 2.23

Аналогично второй игрок решает задачу Решением задачи является

Эти три случая представлены на рис. 2.24.

Рис. 2.24

Совмещая рисунки, получим рис. 2.25.

Рис. 2.25

Точка N (р = 0,75; q = 0,6), очевидно, является точкой равновесия Нэша в смешанных стратегиях, поскольку она получена в результате решения задач максимизации функции u x (p,q ) пори u 2 (p,q) по q.

Ответ: равновесие Нэша:

Как соотносятся между собой решения игр в чистых стратегиях, полученные методом итерационного исключения строго доминируемых стратегий (если они существуют) и равновесий Нэша? Ответ на этот вопрос дают следующие две теоремы.

Теорема 2.3. Если существует процедура итерационного исключения строго доминируемых стратегий в игре G - (S ;, щ;i - 1,...,N), которая приводит к единственному исходу s = (s i ,s 2 ,...,s N), то этот исход является единственным равновесием Нэша.

Доказательство теоремы достаточно очевидно, поскольку процедура итерационного исключения строго доминируемых стратегий в конечной игре не может исключить равновесия Нэша. И в силу единственности получаемого исхода он будет единственным равновесием Нэша.

Замечание. Если в теореме 2.3 исключить слово «строго», то она перестает быть справедливой. Например, в игре

исходы (а; с) и (Ь; с) являются точками равновесия Нэша, хотя стратегия b доминируема.

Теорема 2.4. Если исход явля

ется равновесием Нэша, то он не может быть исключен в процедуре итерационного исключения строго доминируемых стратегий.

Доказательство теоремы следует из определения строгой доминируемости стратегии.

Пример 2.20. Рассмотрим матричную игру:

Точка равновесия Нэша - (а,х). Однако стратегия а первого игрока доминируема (не строго) стратегией с, а стратегия х второго игрока доминируема стратегией у. Тем самым мы показали, что условие строгой доминируемое™ в теореме существенно.

Пример 2.21. Рассмотрим игру двух игроков, называемую «битва полов» (или «семейный спор»). Саша и Маша пытаются решить, как им проводить выходной день, - пойти на футбол или на балет. Конечно, Саше больше хочется пойти на футбол, Маша же получает большее удовольствие от балета. Но совсем никакого удовольствия они не получат, если будут развлекаться порознь (бывает же такое!). Саша и Маша выбирают место развлечения одновременно и независимо друг от друга, не сговариваясь. Матрица выигрышей имеет следующий вид :

В данной игре исход (Футбол; футбол) является точкой равновесия Нэша. Это значит, что если игроки договорились о выборе каждым из них первой стратегии, то ни одному из них невыгодно будет отклоняться от нее, если другой ее придерживается. Аналогично и исход (Балет; балет) будет точкой равновесия Нэша. Рассмотрим теперь возможность выбора игроками смешанных стратегий. Пусть первый игрок (Саша) выбирает первую и вторую чистые стратегии с вероятностями соответственно р и 1 - р. Второй игрок (Маша) выбирает первую и вторую чистые стратегии с вероятностями соответственно q и 1 -q. Получаем матрицу

Выигрыш Саши равен

Стратегия Саши определяется выбором вероятности р. Функция выигрыша Саши и с (р, q) р ,

если , и, следовательно, приСаша выберет максимальное значение вероятности, т.е.р = 1.

Аналогично если, то функция u c (p,q) - убывающая по переменной/;, и, следовательно, при Саша, максимизируя свой выигрыш, выберет минимальное значение вероятности, т.е. р = 0.

При функция и с (р> q) не зависит от р и Сашу удовлетворяет любое значение р е . Таким образом, имеем

Все сказанное наглядно представляется диаграммой (рис. 2.26).

Рис. 2.26

Выигрыш Маши равен

Стратегия Маши определяется выбором вероятности q. Функция выигрыша Маши u M (p,q) является монотонно возрастающей по переменной q,

если , и, следовательно, приМаша выберет максимальное значение вероятности, т.е.q = 1.

Аналогично если , то функция u M (p,q) - убывающая по переменной q, и, следовательно, приМаша выберет минимальное значение

вероятности, т.е.

При функция и и (р, q) не зависит от q и Машу удовлетворяет

любое значение

Все сказанное наглядно представляется диаграммой (рис. 2.27). Совмещение диаграмм на рис. 2.26 и 2.27 дает три точки пересечения наилучших выборов игроков на всевозможные действия другого игрока (рис. 2.28).

Имеем три точки равновесия Нэша. Первые

две из них соответствуют выбору чистых стратегий (Балет; балет) и (Футбол; футбол). Третья точка представляет собой точку равновесия Нэша в смешанных стратегиях.

Заметим, что значения платежных функций обоих игроков в точке В соседней точке, например , значения платежных функций игроков равны Однако

эта точка не будет точкой равновесия, поскольку если Маша будет придерживаться стратегии , то Саше будет более выгодна стратегия р = 1,

поскольку

Рис. 2.27

Пример 2.22. Рассмотрим пример биматричной игры, в которой существует бесконечно много равновесий 11эша:

Выигрыш первого игрока равен

р получим

Графически этот выбор изображается следующим образом (рис. 2.29).

Рис. 2.29

q вторым игроком. Но первый игрок не знает, каков выбор второго игрока. Он лишь знает, что второй игрок будет также максимизировать свою функцию выигрыша по переменной q.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим

Графически этот выбор изображается следующим образом (рис. 2.30).

Рис. 230

Совместим графики на рис. 2.29 и 2.30 (рис. 2.31).

Рис. 2.31

Графики совпадают на отрезке АВ и в начале координат. Все эти точки и будут равновесиями Нэша в смешанных стратегиях. Точка p = q = 0 означает выбор профиля чистых стратегий (b;d ). Поэтому получим: NE:{(b;d), (pa + (l-p)b ; с), ре }.

Следующая теорема дает ответ на вопрос о существовании равновесия Нэша в довольно широком классе игр.

Теорема 2.5 (Нэш, 1950). Для любой конечной игры (т.е. множество игроков и множества их чистых стратегий конечны) в нормальной форме G = (N,S jt Uj,i = 1,..., N) всегда существует по крайней мере одна точка равновесия Нэша, возможно, в смешанных стратегиях.

Чистые стратегии могут быть строго доминируемы смешанными стратегиями, даже если в чистых стратегиях не существует доминируемых стратегий. Покажем это на следующем примере.

Пример 2.23. Дана биматричная игра:

Найти все равновесия Нэша в смешанных стратегиях.

Решение

В данной биматричной игре невозможно, рассматривая только чистые стратегии игроков, исключить строго доминируемые стратегии. Попробуем найти смешанную стратегию, которая доминирует чистую стратегию.

Сначала рассмотрим возможность исключения строго доминируемых строк. Выпишем для удобства матрицу выигрышей первого игрока (он выбирает строки):

Очевидно, никакая смешанная стратегия ра + (1- р)Ь не сможет доминировать чистую стратегию с, поскольку неравенство /?-0 + (1-/?)-2>14 невыполнимо ни при каких значениях р е . Значит, стратегия с не может быть строго доминируема даже с применением смешанных стратегий.

Как было доказано выше, величина f(p) = p-A + (l-p) B при /?е, {А и В - действительные числа) может принимать все значения между числами А и В. Действительно, поскольку /(/?) - линейная функция, то множеством ее значений является отрезок E(f) = .

Аналогично стратегия а не может быть доминируема смешанной стратегией pb + (l-р)с, поскольку (при выборе вторым игроком стратегии е) потребуется выполнение неравенства 4/?+ 4(1-/?) >6.

Предполагая, что смешанная стратегия pa + (1 - р)с может строго доминировать чистую стратегию Ь, также получим невыполнимое неравенство 2/?+ 4(1-/?) >8.

Следовательно, в данной игре не существует строго доминируемых стратегий первого игрока.

Рассмотрим стратегии второго игрока. Выпишем матрицу его выигрышей:

Очевидно, стратегии ей/ недоминируемы. Поскольку 2 е , 1 е , то можем предположить, что существует смешанная стратегия qe + (l-q)f, строго доминирующая чистую стратегию d. Проверим наше предположение. Для этого требуется выполнение системы неравенств:

Необязательно было решать систему неравенств. Достаточно догадаться, что эта система имеет какое-нибудь решение. Например, в данной задаче

видно, что смешанная стратегия строго доминирует стратегию d.

Важно понимать, что не только второй игрок исключает стратегию d, но и первый игрок, поставив себя на место второго и выполнив за него все указанные операции, может прийти к вывод}" об исключении стратегии d.

Вычеркнув первый столбец, получим матрицу

Нетрудно увидеть, что в этой матрице смешанная стратегия первого

игрока строго доминирует стратегию с (это стало очевидным только

после исключения стратегии d). Игра сократилась до биматричной игры размерности 2x2:

Теперь е>/. Получим

И наконец, а >- Ь.

Равновесие Нэша: (а; е). Этот исход будет единственным равновесием Нэша в исходной игре, поскольку процедура исключения строго доминируемых стратегий не может исключить равновесный по Нэшу профиль стратегий.

Пример 2.24. Последовательным исключением строго доминируемых чистых стратегий привести биматричную игру к игре размерности 2x2 (смешанная стратегия может доминировать чистую). Найти все равновесия Нэша в смешанных стратегиях.

5) Пусть первый игрок играет смешанную стратегию рА + ( 1 - р)С, а второй - qE + (-q)F.

Выигрыш первого игрока равен

Из условия максимизации функции выигрыша по переменной р получим

Графически этот выбор изображается следующим образом (рис. 2.32).

Рис. 2.32

Это наилучшее для первого игрока действие, зависящее от выбора вероятности q вторым игроком.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим Графически этот выбор изображается следующим образом (рис. 2.33).

Рис. 2.33

Совместим графики на рис. 2.32 и 2.33 (рис. 2.34).

Рис. 2.34

Графики совпадают в трех точках. Эти точки и будут определять равновесия Нэша:

Пример 2.25. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Способ 1. Нетрудно видеть, что в данной игре не существует строго доминируемых стратегий. Введем смешанные стратегии игроков:

Выигрыш первого игрока максимизируем по переменной р:

Выигрыш второго игрока максимизируем по переменным q и г.

Рассмотрим различные значения р (рис. 2.35).

Рис. 235

Случай 1. Пусть р 0,5. Тогда из (2) и (3) получим р - 0. Итак, (р = ();q = 0;г = 1) - равновесие Нэша. Это исход (b, d).

Случай 2. Пусть р = 0,5. Тогда из (2) получим q = 0, а из (1) 5г= 3, или г = 0,6. Следовательно, (р = 0,5; q = 0; г = 0,6) - равновесие Нэша. Это исход (0,5а + 0,56, 0,6d + 0,4е).

Случай 3. Пусть р е (0,5; 1). Тогда из (2) и (3) получим q = 0; г= 0. Но тогда из (1) имеем р = 1, что противоречит исходному условию.

Случай 4. Пусть р = 1. Тогда из (3) получим г = 0, а из (1) q 3, что выполняется при всех допустимых q. Итак, (р = 1; е;г = 0) - равновесия Нэша. Это исходы (a, qc + (-q)e), qe[ 0; 1].

Ответ: (6, d) (0,5а + 0,56, 0,6с/ + 0,4с); (a,qc + (-q)e), ^е.

Покажем еще один способ нахождения равновесий Нэша в таких играх.

Способ 2 (решения примера 2.25). Рассмотрим выигрыши второго игрока при условии выбора первым игроком смешанной стратегии ра + (-р)Ь. Выигрыш второго игрока при выборе им чистой стратегии с равен U - 3 р при выборе чистой стратегии d - = р + 3(- р)] при выборе чистой стратегии е - U? 2 =Зр + (-р).

Построим графики функций выигрыша второго игрока (рис. 2.36).


Рис. 2.36

Случай 1. Пусть р d. Но наилучшим ответом первого игрока на стратегию второго d является чистая стратегия b (2 > 0), т.е. р- 0, что удовлетворяет исходному условию р 0,5. Следовательно, (b , d) - равновесие Нэша.

Случай 2. Пусть р е (0,5; 1). Тогда второй игрок выбирает чистую стратегию е. Но наилучшим ответом первого игрока на стратегию второго е является чистая стратегия а (4 > 1), т.е. р = 1, что не удовлетворяет исходному условию. В данном промежутке нет равновесий Нэша.

Случай 3. Пусть р = 0.5. Тогда вторым игроком не будет играться стратегия с, г.е. q - 0. Рассмотрим игру

Математическое ожидание выигрыша первого игрока равно

Значение р = 0,5 может быть наилучшим ответом на смешанную стратегию второго игрока только при г = 0,6. Тогда исход (0,5а + 0,56, 0,6d + + 0,4с) - равновесие Нэша.

К тому же результату мы придем и из других рассуждений. А именно, для первого игрока значение р = 0,5 возможно только в случае его безразличия к выбору стратегии а или Ь. Э го значит:

Случай 4. Пусть р= 1. Тогда вторым игроком не будет играться стратегия d, т.е. г = 0. Матрица принимает вид

Тогда (a, qc + (1 - q)e) - равновесие Нэша при любых

Пример 2.26. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Рассмотрим выигрыши второго игрока при использовании им чистых стратегий в ответ на смешанную стратегию первого игрока:

Построим графики этих функций (рис. 2.37).


Рис. 2.37

В точке А пересекаются прямые d не. Найдем точку пересечения:

В точке В пересекаются прямые сие. Найдем точку пересечения:

Ломаная линия MABN - наилучший ответ второго игрока при различных значениях р. Рассмотрим несколько случаев.

Случай 1:

чистая стратегия d. d й, что соответствует значению b, d).

Случай 2: . Тогда наилучшим ответом второго игрока является

чистая стратегия е. Но наилучшим ответом первого игрока на чистую стратегию е второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке нет равновесий Нэша.

Случай 3: . Тогда наилучшим ответом второго игрока является

чистая стратегия с. Но наилучшим ответом первого игрока на чистую стратегию с второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке получили единственное равновесие Нэша (а } с).

Случай 4: (точка Л). В этой точке заведомо не играется стратегия с. Матрица игры принимает вид

Рассмотрим математическое ожидание выигрыша первого игрока:

При равновесном по Нэшу исходе первый игрок максимизирует по р свою функцию полезности:

Очевидно, если является оптимальным для первого игрока, то

. Это значение можно получить из условия равенства значений функции выигрыша первого игрока при выборе им а и /;. Иными словами, первому игроку безразлично, выберет он а или b :

Следовательно, профиль стратегий является равно

весием Нэша.

Случай 5: (точка В). В этой точке заведомо не играется стратегия d. Матрица игры принимает вид

Поскольку а >- b , то р = 1 , что противоречит исходному условию Следовательно, не существует равновесия Нэша, при котором второй игрок выбирает

Этот метод решения можно применять для нахождения равновесий Нэша в любых биматричных играх размерности 2 хп или п х 2, и, следовательно, он более универсален, чем метод, примененный в способе 1 решения предыдущего примера.

  • Здесь и далее в аналогичных примерах стратегии Саши (Футбол, Балет) обозначенысловом, начинающимся с заглавной буквы, стратегии Маши - со строчной.

Проявляет себя в реальности, дабы показать, что это понятие является не просто абстрактным термином, а обобщением реально существующей закономерности. Однако, несмотря на наглядность примера, на основании только его одного может показаться, что мы наткнулись на какой-то вырожденный случай. Поэтому имеет смысл рассмотреть и более общее описание данного правила.

Многие читатели, возможно, знакомы с равновесием Нэша по одному весьма распространённому его частному случаю - так называемой «дилемме заключённого». Его суть примерно в следующем.

В тюрьме находятся два заключённых, которых взяли с поличным по отдельности, но ещё подозревают в более тяжких преступлениях. Если участие докажут, то срок заключённых возрастёт до десяти лет. Сейчас же они отсиживают по году каждый. Следствие предлагает каждому из них пойти на сделку и дать показания против второго. В этом случае первому срок скостят до полугода, а второй сядет на десять. Однако заключённые понимают, что если они оговорят друг друга, то вряд ли их обоих пощадят - скорее добавят каждому ещё лет по пять.

Расклад можно отобразить при помощи следующей таблицы.

Легко видеть, что «зелёные» варианты (1, 2) и (2, 1) являются симметричными, в двух же других положение заключённых будет идентичным. Поэтому можно рассмотреть логику ситуации с точки зрения только одного из заключённых - для второго она будет такой же.

Заключённый, разумеется, хочет наименьшего срока для себя. Но если он будет хранить молчание, то, возможно, его коллега даст против него показания, чем повысит ему срок до десяти лет. Если бы не обещанное снижение срока, то можно было бы тешить себя мыслью «а зачем мне это?», но соблазн снизить срок слишком вели́к. Кроме того, второй заключённый, как понимает первый, будет подозревать его, первого, в том, что он даст показания против второго и повысит тем самым ему срок.

«Обидно будет оказаться крайним и загреметь на десять лет», - думает первый. Но «и второй наверняка думает так же, и так же подозревает меня, - понимает он, - а потому шансов, что коллега меня не заложит, очень мало. Выходит, надо давать показания: если второй каким-то чудом промолчит, то будет полгода, проговорится - пять. Ну хоть не десять, которые я неизбежно получу из-за разоткровенничавшегося со следствием моего подельника!».

«Оранжевый» вариант (1, 1) является удобоваримым для обоих и в каком-то смысле это оптимум в данной ситуации. Однако у каждого есть ещё лучший вариант - соответствующий «зелёный» (1, 2) или (2, 1). В результате чего на деле будет реализован «красный» вариант (2, 2).

Можно сказать, что для каждого из заключённых он не так плох: всего пять лет против десяти в «зелёном» варианте в пользу подельника. Однако представим, что в «красном» варианте обоим дадут по десять. Логика в данном случае чуть-чуть поменяется: «если я его сдам, то хотя бы есть шанс отвертеться от десяти лет, а если промолчу - шансов нет, он меня наверняка заложит по тем же соображениям». Однако тут система подталкивает заключённых выбрать наихудший вариант из возможных. Действуя, что характерно, строго ради своей выгоды.

Рассмотрим теперь ещё одну ситуацию. Есть две фирмы - А и Б. Каждая из них может воспользоваться стратегией - Икс или Игрек. Однако на результаты оказывает влияние не только стратегия, выбранная самой фирмой, но и стратегия второй фирмы тоже. Выигрыш или проигрыш каждой из фирм мы представим в виде следующей таблицы.

Я специально для повышения накала страстей подобрал числа так, чтобы убыточное для обеих фирм состояние лишь незначительно отличалось бы от «соседних» с ним: тем удивительнее, что будет реализовано именно оно. Фирмы, действуя строго в своих интересах, с большой вероятностью захотят получить тысячу рублей вместо ста и тем самым не получат ничего, а наоборот, даже утратят. Переход же одной из фирм на стратегию Икс ещё сильнее ухудшит её положение - другая фирма будет обогащаться, а вторая терять ещё больше, хотя и незначительно больше.

Запишем вышеприведённые матрицы в более общем виде, абстрагировавшись от «фирм», «заключённых», «сроков» и «рублей». Положим, что у нас просто есть два игрока А и Б, играющие в некоторую игру, где на каждом ходе можно совершить один из двух ходов - Икс или Игрек. Выигрышем являются просто некие «баллы», наибольшее число которых каждый игрок и стремится набрать.

А делает ход Икс А делает ход Игрек
Б делает ход Икс А: a 0
Б: b 0
А: a 1 > a 0
Б: b 1 < b 3
Б делает ход Игрек А: a 2 < a 3
Б: b 2 > b 0
А: b 3
Б: a 3

Правила игры, представленные данной матрицей, будут «подталкивать» игроков к реализации «красного» варианта (2, 2), даже если выигрыши игроков в этом случае существенно меньше, чем во всех остальных вариантах. Правда, в зависимости от соотношения выигрышей (которые могут быть в том числе отрицательными - то есть проигрышами), обозначенных буквами «a» и «b» с индексами, частота реализации каждого из вариантов будет разной.

В частности, на выбор может влиять среднее арифметическое выигрышей при выборе каждой из стратегий, а также предположительная вероятность, с которой игрок сделает тот или иной ход (которая, кстати, может быть аппроксимирована частотой ходов, сделанных в предыдущих раундах). Так, в простейшем случае игрок А для оценки хода Икс складывает a 0 и a 2 и делит результат на два, полагая выбор хода со стороны Б равновероятным. То же самое он проделывает для хода Игрек - складывает a 1 с a 3 , после чего делит результат на два - и сравнивает результаты. В более сложном случае игрок считает сумму a 0 *p x + a 2 *p y , где p x и p y - вероятности ходов Икс и Игрек, сделанных игроком Б. Результат сравнивается с a 1 *p x + a 3 *p y .

Можно было бы, конечно, снова поделить результат на два, но поскольку деление на два имеет место быть для обоих вариантов хода, для сравнения величин эта операция необязательна, как, впрочем, и в случае «равновероятных ходов».

Также игрок может ориентироваться на сами величины. Например, если один из ходов означает вероятный проигрыш - особенно крупный, такой, какой игрок не может себе позволить, - игрок, не исключено, будет выбирать другой ход, даже если предположительный выигрыш при другом ходе в среднем ниже, но зато в обоих случаях положительный.

Наконец, надо помнить, что люди часто, скажем так, «помнят о другом игроке». Если второй игрок - конкурент или даже враг, то, возможно, будет иметь место тенденция выбирать такой ход, который навредит другому игроку, даже если первый игрок из-за этого выиграет мало, и даже, не исключено, проиграет. Если второй игрок - друг, то чаще будет выбираться ход, позволяющий чуть-чуть выиграть и ему тоже - в том случае, если «игра» - это не заранее заявленное соревнование, а какой-то процесс из реальной жизни. Возможности мести и поблажек, разумеется, зависят от соотношений в матрице - при некоторых из них скорее забудут, что соперник - твой друг, чем начнут ему слегка подыгрывать.

Иными словами, рассматриваемый нами принцип отображает именно что тенденцию, а не детерминированность. Чем сильнее соотношения значений выигрышей и проигрышей подобны фигурировавшим в «дилемме заключённого», тем чаще и быстрее система будет подводить игроков к «наихудшему» варианту и тем «более наихудшим» будет этот вариант.

Есть как бы «невидимая рука рынка», которая как бы невидимо подталкивает игроков… ну, вы знаете. Точнее, нет, может быть, и не знаете. В классическом варианте «рука рынка» как бы подталкивает куда всем надо, а тут она толкает совсем не туда. Не во всеобщее благо, а в перманентный кризис, которого при иных раскладах можно было бы избежать, что нам иллюстрирует и «дилемма заключённого», и гипотетический пример с конкуренцией фирм, и реальный пример с неизбежным завышением сроков разработки софта, о котором речь шла в предыдущей статье.

Рынок толкает игроков к равновесию Нэша, которое сколь угодно далеко может отстоять от их общего и личного блага.

В данном случае мы рассматривали только двух игроков и игру с двумя ходами, однако возможно и более широкое обобщение, которое как раз и является формулировкой равновесия Нэша:

Если в некоторой игре с произвольными количеством игроков и матрицей выигрышей существует такое состояние, что при выборе не соответствующего ему хода любым из игроков в отдельности его личный выигрыш уменьшится, то это состояние окажется «равновесным» для данной игры.

Кроме того, в ряде случаев ходы игроков будут иметь тенденцию стремиться к этому состоянию, даже если в этой игре есть другие состояния, в рамках которых выигрыш игроков в целом и/или по отдельности выше.

Приводить примеры такого общего случая способом, подобным ранее использованному, ощутимо тяжелее, поскольку добавление каждого игрока будет добавлять ещё одно измерение к матрице выигрышей. Однако об этом - позже.