Меню

Какие лампы использовать для выращивания растений в домашних условиях? Дополнительное искусственное освещение цветов и растений в квартире.

Обслуживание и ремонт

Комнатные растения нуждаются в достаточном количестве света, без которого они не могут правильно развиваться. Чтобы организовать их правильное освещение, необходимо использовать специальные светодиодные светильники. Но к сожалению, не все знаю .

Лампа с диодами является самым эффективным способом обеспечения необходимого цветового спектра светокультурных растений. Чаще всего оно используется для , в оранжереях, аквариумах, закрытых садах и для комнатных цветов.

LED-светильники стали самой лучшей альтернативой естественного освещения, так как отличаются экономичностью и длительным сроком эксплуатации.

Как подобрать искусственное освещение

Недостаточное освещение способствует замедлению естественного развития растения.

Ствол цветка утончается, между листочками увеличивается шаг, а появившееся листья не достигают нормальных размеров (пеларгония). Листья, которые располагаются у земли становятся вялыми, желтеют и опадают (фикусы и плющ).

По цвету растения видно, что ему не хватает света: оно блекнет, разноцветные листья становятся более зеленными для фотосинтеза. Комнатные цветы, которые выкинули бутоны, не способны развить полноценный цветок. Они мелкие и быстро увядают.

При излишнем освещении растения также испытывают стресс, даже если их хорошо поливают. Чаще всего, комнатный цветок выглядит вялым, а его листья по краям начинает покрываться желтизной. Если не уменьшить поток света направленного на него, то со временем оно засохнет.

Оптимальным решением такого вопроса является светодиодное освещение (часто используют ). Оно способно учесть различные факторы, от которых зависит выращивание светокультурных растений, а также:

  1. Обеспечивает процесс фотосинтеза.
  2. Предоставляет оптимальное световое облучение.

На рынке сегодня представлен широкий ассортимент светодиодных ламп для растений

Для подсветки небольшой домашней оранжереи используют подобные светильники

Оптимальное световое насыщение растение получает при наличии солнечного света, который представляет собой белый свет. Он включает в себя все спектральные цвета, которые можно увидеть. Светодиодные лампы способны создавать белый свет, который так необходим для правильного цветения светокультур.

Пристальное внимание стоит уделить светолюбивым цветам. Для них необходимо:

  1. Интенсивность освещения – 140-220 Вт/м2.
  2. Спектральное насыщение: зеленого цвета – 490-600 нм; красного цвета – 600-700 нм; синего цвета – 380-490 нм.

Кроме основных биологических потребностей, должны удовлетворяться условия светового насыщения различных светокультур. Основными требованиями для растения являются:

  • тепловой режим;
  • продолжительность светового дня;
  • наличие искусственного светового освещения;
  • световой спектр.

Полноспектральная светодиодная фитолампа

Характеристики LED ламп

Важную роль в том, какое количество света будет получать растение, играет высота подвесного освещения. При правильном расположении светодиодной лампы можно создать естественные условия для роста и цветения светокультур дома.

Для полноценного процесса фотосинтеза необходимо, чтобы длина волны была от 400-700 нм – PAR-диапазона.

Особое значение в освещении играет диапазон спектрального цвета, который нужен для фотосинтеза. Отталкиваясь от этого показателя, определяется количество ламп, их высота над цветами. При использовании люминесцентных добиться полноспектрального свечения практически не возможно

Cтоит учесть, что существуют волны, которые не участвуют в фотосинтезе. Они могут провоцировать быстрое старение, появление излишних побегов и разрастанием. К таким волнам относят инфракрасный свет и ультрафиолет. Поэтому не рекомендуется использовать для выращивания растений.

Наиболее важными волнами, которые помогают комнатным цветам правильно расти, являются синие и
красные.

Диодный светильник не накаливается и обладает свойством равномерно распространять синий и красный цвет. Он может излучать фиолетово-синий и красно-оранжевый цвет. Это позволяет интенсивно развиваться растению с фитобиологической стороны.

Мощность светодиодного освещения рассчитывается в ваттах на м2. Для определения количества ламп учитывают:

  • площадь освещения;
  • высоту лампы;
  • вид светокультуры.

Подача света может быть: периодической, по циклам, постоянной.

Оригинальный диодный модуль для подсветки молодых растений

Современный LED светильник позволяет размещать комнатные растения в любом уголке квартиры

Как выбрать оптимальный вариант

Для комнатных цветов следует использовать следующие режимы освещения:

  • 1000 -3000 лк – для растущих в затемненном помещении, далеко от окна;
  • 3000 – 4000 лк – для нуждающихся в рассеянном потоке света;
  • 4000 – 6000 лк – для нуждающихся в прямом освещении;
  • 6000 – 12 000 лк – для экзотических видов, плодоносящих.

Красивые цветы – залог уюта в вашем доме

Найти подробную информацию о свойствах и правилах выбора фитоламп для рассады можно .

Красные светодиоды необходимы растениям, когда они плодоносят или цветут. Существует две волны красного светодиода: слабопоглащаемая и дальняя. Способствует образованию хлорофилла группы А. В диодных светильниках используют больше ламп красного цвета, чем белого или синего.

Производители светодиодов

Проверенными и надежными российскими производителями являются:

  • Оптоган;
  • Оптрон;
  • Артледс.

Мировыми производителями:

  1. Agilent Technologies – компания, которая не первый год выпускает светодиодные лампы высокого качества. Производитель дает гарантию на лампы не менее 10 лет и выпускает светильники с различной комбинацией ламп.
  2. Optek Technology – производитель высокого уровня. На мировом рынке прочно занял свое место в изготовлении светодиодного освещения. Выпускает различные лампы отличного качества.
  3. Edison известный производитель, который ничем не уступает своим конкурентам. Изготавливает специализированные светодиодные лампы широкого круга использования: в медицине, косметологии, а также для выращивания палисадников.
  4. Philips Lumileds – за многие годы, эта компания завоевала доверие у многих покупателей. Выпускает лучшие лампы для светодиодного освещения. Предоставляет длительную гарантию на всю продукцию.
  5. Toshiba – компания, которая успешно изготавливает различной конфигурации и видов светодиодные лампы. Качество товара на высшем европейском уровне.

Опыт применения

  1. Ярослав, 26 лет. Санкт-Петербург. «Я установил светильник с двумя рядами светодиодов: красными и синими лампами. Был доволен результатом: растения стали более сильными и плодоносными. Рекомендую такие лампы для светокультур».
  2. Светлана, 42 года. Нижний-Новгород «Занимаюсь разведением светокультурных растений. Специально установила светильник с синими и красными лампами производителя Артледс. Уже через несколько дней заметила, что цветы приобрели более сочный цвет, стебли стали более крепкими и листья перестали желтеть по краям».
  3. Ирина, 22 года. Москва «Специально занимаюсь выращиванием цветов на продажу. Для большей эффективности установила светодиодные лампы, которые помогают цветам всегда быть в отличном состоянии. Советую всем цветочникам не экономить на правильном освещении».
  4. Андрей, 34 года, Тюмень «Используя светодиодные лампы уже не первый год. Сначала относился скептически, но на собственном опыте убедился в результативности такого освещения. Главное правильно расположить светильник и своевременно поливать цветы».

хороший способ благотворно влиять на рост и цветение комнатных цветов в зимний период , а также в помещениях, где свет плохо проникает.

Большое значение в освещении играет: спектр, высота подвеса и режим подсветки растений.

Если хотите, чтобы комнатные цветы были здоровыми и красивыми, необходимо учесть световые параметры и потребность определенных видов растений в искусственном светодиодном освещении.

Видео

Данное видео расскажет Вам про преимущества и недостатки светодиодного освещения для растений.

AQUA-FARM ЦВЕТ СВЕТА И ЕГО ВЛИЯНИЕ НА РАСТЕНИЯ

Солнечный свет - источник энергии, диоксид углерода (углекислый газ СО2) воздуха - источник углерода - главного строительного материала и вода - источник кислорода, входящего в ее состав на молекулярном уровне. И все эти три жизненные силы объединены процессом фотосинтеза, при котором происходит образование органических веществ (углеводов) благодаря энергии света при участии фотосинтезирующего пигмента - хлорофилла. Хлорофилл (от греч. «зелёный» и «лист») - зелёный пигмент, обусловливающий окраску растений в зелёный цвет.

Днем, на свету вода разделяется на кислород и водород и запасается энергия. Ночью, в темноте углекислый газ соединяется благодаря запасенной энергии с водородом, и образуются молекулы углеводов, то есть растение растет!

Как же влияет на фотосинтез и соответственно на рост растений спектральный состав солнечного или иного света?
Посмотрим на спектр, который использует хлорофилл, что мы видим?


Хотя максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм (где находится и максимум чувствительности нашего глаза), поглощается хлорофиллом преимущественно синий и красный свет из солнечного спектра, то есть длины волн 440-470 нм и 630-670 нм.

Вы задумывались почему практически у всех растений зеленый цвет? Нет? Немного поясним - цвет предметов, которые видит наш глаз это отраженная часть светового потока (света). Черный цвет у предметов, которые полностью поглощают световое излучение. Белые - наоборот - полностью рассеивают направленный на них свет. Зеленые - отражают зеленую часть этого самого светового потока, синие - синюю часть и так далее. Итак, зеленые пердметы отражают зеленую составляющую света! Вот оно! Вот почему эту часть спектра наши растения отказываются использовать! Хлорофилл, содержащийся в большей части листа и ответственный за самый важный процесс в растении - зеленого цвета, то есть он полностью отражает зеленый цвет!

Теперь посмотрим на цветовой спектр излучаемый обычной лампой накаливания.


Как видим максимальное излучение находится за пределами красной зоны, в области инфракрасного излучения(теплового). Так оно и есть - лампы накаливания очень сильно нагреваются. Имено из-за этого они могут нанести ожог листьям или попросту их высушить! Кроме этого мощность светового потока от такой лампы неприлично низка и ее недостаточно для нормального роста растения. У данного типа ламп наименьший коэффициет полезности по соотношению силы света приходящаяся на ватт мощности

Посмотрим на типичные люминисцентные лампы, так называемые лампы дневного света. Сюда можно также включить и новый тип ламп - энергосберегающие, так как по сути своей они так же являются люминисцентными лампами.


У них световой поток необходимого спектра (зеленый нам не нужен) смещен в сторону синей составляющей спектра. Синий цвет безусловно хорош для прорастания! Красный же в данной лампе снижен.
Мощность светового потока у данной лампы значительно превышает лампы накаливания, но продолжим изучать возможности.

Газоразрядные лампы. До недавнего времени они занимали наилучшую позицию с точки зрения цены светового потока. Они имели наиболее мощный световой поток на каждый ватт своей мощности, но по спектру они не сильно полезны для выращивания растений. К тому же данные лампы, как и лампы накаливания, нагреваются, со всеми вытекающими последствиями. К тому же из всех типов ламп они наиболее пожароопасны, не говоря уже о их весе (для обычных систем поджика это около 10 кг, для электронных - существенно меньше)!

И вот, с развитием светодиодных кристаллов, появилась уникальная возможность переломить ситуацию. Эффективность светодиодных ламп бесспорна. Изучим теорию. У них максимальное соотношение производительности светового потока к потребляемой мощности. Кроме этого есть диоды излучающие не только белый, то есть полноценный спектр, а только определенные его участки - зеленый, желтый, синий, красный. Вот оно! Синий и красный - именно они нужны для активного роста растения! Именно их правильное сочетание и необходимая мощность обеспечат растению нужный световой поток. Однако, есть и минус - их стоимость, которая в несколько раз выше обычной "люмы".

При этом обратите внимание, что к этим цветам спектра наш глаз наименее чувствителен. Именно поэтому для нас незаметно, падение световой мощности люминисцентной лампы. Нам кажется, что она светит как и светила раньше, а на самом деле она светит уже в полсилы, при этом потребляя такое же количество энергии как и раньше! Заметить этот эффект Вы сможете, только если рядом включите новую лампу.

Удивительно, но есть которые как раз и излучают нужные растениям участки спектра!
Кроме всего прочего теоретический срок службы диодов - 10 лет! Конечно они так же как и люминисцентные лампы теряют часть своих свойств по мощности излучения, но у диодов эта характеристика более линейна и растянуто во времени. Светопотери составляют всего около 10% за год эксплуатации.

    Итак, подведем итог - специализированные сверхяркие светодиоды это:
  • экономия электроэнергии - максимальная производительность светового потока в рассчете на потребленные ватты
  • излучение узкой части спектра (синий и красный) столь необходимой растениям
  • низкая деградация светового потока - в несколько раз меньше по сравнению с люминисцентными лампами, то есть полезный срок службы в 10 раз больше!
  • безопасность - диоды экологически безвредны
  • безусловная экономия финансов - низкая потребляемая мощность+отсутствие необходимости периодически менять лампы

Светодиоды для выращивания растений и рассады.

Приведенная выше статья была написана более 2 лет назад, за это время много изменилось. Появился опыт применения светодиодных систем в реальных условиях и пришло время "дописать" нашу статью. Многие из наших покупателей спрашивают - почему же мы отказались от таких "хороших" светодиодов? Чтобы не объяснять каждому мы приняли решение опубликовать данный материал. Использование (даже частичное) разрешается только после согласования с нами и установки ссылки на на эту статью.

За последние 3 года нами были проведены не только проектные, конструкторские и опытные работы, но и сделаны реалано работающие промышленные образцы. Сколько мы потратили на них сил и средств - оставим за кадром.

Изложим только суть, к которой пришли. А точнее некоторое из наработанных материалов. Фотографии скажут сами за себя. Далее судить только Вам!

Тестирование проводилось в одинаковых системах гидропонного выращивания нашего производства, поэтому в их эффективности сомнений нет, так как они уже не раз ее подтверждали.

Так как клубника является растением очень чутко реагирующим на количество света - первой в этом сравнении посмотрим на нее.


Слева - клубника выращенная под светодиодами.

Поясним, что мы видим на фотографиях и на что надо обратить особое внимание.

Интервалы съемки примерно одинаковы и составляют 12 дней. Светодиоды мощностью суммарной мощностью 30 Вт и углом 120 градусов спектр смешанный в интервалах 470-630, ЭСБ - 30 Вт, патрон Е14, спектр - указывать не будем:).

Итак, первое на что обратим внимание - размер листовой пластины. Так как под светодиодами(LED) находится клубника с более развитой корневой системой (а это дает ей дополнительные бонусы в скорости набирания вегетативной массы), то главным критерием может быть только скорость увеличения листовой пластины и куста в целом.

Клубника, выращенная под светодиодной лампой - общий прирост листовой пластины, в среднем 90-100%, у клубники выращенной под ЭСБ - прирост с интервалах от 200% до 250%! Так как ЭСБ лампы были подобраны более оптимально, а именно с уменьшенной долей синего спектра, традиционного для таких ламп - угнетения в росте черешковой части листа мы не наблюдаем.

Напротив - у клубники, растущей под LED-лампами видно незначительное угнетение черешковой части, что обусловлено набором светодиодов - 2/1. Как видите, фотографию клубники под ЭСБ даже прилось уменьшить, чтобы она влезла в кадр.

Результат:
Светодиоды хороши, это безусловно, но им не хватает мощности светового потока. Даже у 10 ваттного диода узкого спектра - всего 320 люмен! У ЭСБ при той же мощности - 950 люмен! Базовые цены: ЭСБ лампа - 60 рублей, светодиод - 300 руб. + обязательный блок питания, а это еще 200 руб. Даже при условии, что ЭСБ теряет свою эффективность быстрее LED - результат очевиден!

По стоимости эксплуатации получается абсолюьный паритет! 3*10=30 Вт, то есть 3*500=1500 р. для диодного освещения и 2*15=30 Вт, то есть 2*60=120 руб., с текущей технологичностью эти лампы нормально работают с полной нагрузкой почти год, то есть даже за 10 лет эксплуатации можно будет купить на оставшиеся деньги еще 20-30 таких ламп.

Если же добавить сюда еще необходимую систему теплоотведения, а 10 Вт диоды выделяют очень много тепла, то по стоимости они уже явно проигрывают!

Смотрим следующие фото.


Слева - томаты растущие под светодиодами.
Справа - под нашими подобранными ЭСБ, которые сейчас и поставляются с установкой.

Давайте проанализируем и эту картину. Интервалы съемки примерно одинаковы и составляют 12 дней. Светодиоды мощностью суммарной мощностью 18 Вт (каждый по 3 Вт) и углом 120 градусов спектр смешанный в интервалах 470-660, ЭСБ - 46 Вт (2*23 Вт), патрон Е27, спектр - указывать не будем:).

Здесь LED-система была доработана: использовались менее мощные диоды, так как нужно было уменьшить стоимость системы питания и охлаждения. Суммарное падение тепловыделения почти на 70%, при падени общей мощности всего 40%! ЭСБ также была уменьшена в стоимости, за счет применения более распространенных ламп:)

Итак, за счет уменьшившейся мощности получили вытягивание ствола у томата, по сравнению с рассадой растущей под ЭСБ. Скорость наращивания зеленой массы тут точно установить не получится(так как замеров с линейкой мы не делали), можно судить только по общему состоянию будущей рассады.

На фото справа - видим мощный росток с черезвычайно толстым для этой стадии стеблем - для рассады это очень хорошо и означает только одно - освещения у нас избыток, его растению хватает полностью, что и позволяет развиваться в нужном нам направлении!

LED-система же, хоть и подешевела почти на 600 рублей, оставляет желать лучшего. Ее параметры ухудшились. Хорошую рассаду под ней уже не вырастить - сильно не хватает светового потока. Да, спектр правильный и очень нужный, но не хватает его количества!

Общий вывод:
Был еще ряд сравнительных тестов, тестировали даже на аквариумных растениях. Получили очень интересные результаты, которые лагут в основу наших гибридных систем, к которым мы будем стремиться!


Тестовый аквариум - светодиодое освещение (20 Вт).


Реальный аквариум - светодиодое освещение (26 Вт).

Наше мнение - чисто светодиодная система малопригодна для применения в выращивании растений. Для аквариумистики она подходит больше, но и там ее не хватает. В любом случае она на сегодня - 2012 год - проигрывает люминисцентным лампам в чистом виде. Вполне возможно в гибридной системе она еще найдет свою реализацию, но это опять же тесты, тесты и реальное применение. А не "обещания" производителей диодов и их теоретические характеристики, а это деньги, при чем не малые.

Увы, эпоха диодов для нас пока не наступила. А практика, как всегда, немного разошлась с теорией.

В листьях содержится пигмент, (пигмент - окрашенное вещество в организме, участвующее в его жизнедеятельности и придающее цвет коже, волосам, чешуе, цветкам, листьям) называемый хлорофиллом, и именно через него растение поглощает световую энергию.

Активный рост растения, увеличение листьев происходит путем питания растения углеводородами - обычными органическими соединениями. Их вырабатывает растение в процессе фотосинтеза. Углеводороды - результат реакции воды и двуокиси углерода. Однако продуктом, который вырабатывается в завершении фотосинтеза, является кислород - соединение, без которого не могут существовать живые организмы.

Факторы влияющие на фотосинтез

Существует ряд факторов, напрямую влияющих на процесс фотосинтеза растений. Прежде всего, интенсивность процесса напрямую зависит от

Температуры окружающего воздуха,

Достаточного обеспечения растения водой

Интенсивности света.

Однако для того, чтобы растение развивалось оптимально, важно не только наличие световой энергии, но и спектр света, а также длительность светового периода, когда растение бодрствует, и темного периода, когда оно отдыхает.

Если правильно регулировать длительность светового дня, то стадиями роста растения можно управлять. Так, у растений длинного дня можно регулировать их вегетативную стадию, а также время цветения. В свою очередь, для растений короткого дня световой период должен оставаться на определенном уровне, ведь слишком длительный период света может существенно нарушить время его цветения. Существует и категория растений, которые растут в зависимости от наличия света, но при этом продолжительность темного и светлого периода суток на них не влияет.

Таким образом, правильно регулируя свет, можно достичь качественных результатов в процессе выращивания разных видов растений.

Дополнительно освещение для растений вы можете купить прямо сейчас в нашем онлайн магазине, в разделе

Что же такое спектр света, и как он влияет на развитие растений?

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца - это лучи, которые имеют разную длину волны. Таким образом, свет - это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин.


Но в жизни растений наиболее важное значение имеет физиологически активная и фотосинтетическая активная радиация.

Самые важные лучи для растений - оранжевые (620-595 нм) и красные (720-600 нм). Эти лучи поставляют энергию для процесса фотосинтеза, а также «отвечают» за процессы, влияющие на скорость развития растения. Например, пигменты с пиком чувствительности в красной области спектра отвечают за развитие корневой системы, созревание плодов, цветение растений. Для этого в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра.

Так, к примеру, слишком большое количество красных и оранжевых лучей могут задержать цветение растения.

Также в фотосинтезе непосредственное участие принимают и синие, а также фиолетовые лучи (490-380нм). Кроме того, в их функции входит стимулирование образования белков и регулирование скорости роста растения. Те растения, которые растут в природных условиях короткого дня, быстрее зацветают именно под воздействием этих лучей.

Пигменты с пиком поглощения в синей области отвечают за развитие листьев, рост растения и т.д. Растения, выросшие с недостаточным количеством синего света, например, под лампой накаливания, более высокие - они тянутся вверх, чтобы получить побольше "синего света". Пигмент, который отвечает за ориентацию растения к свету, также чувствителен к синим лучам.

Лучи, которые имеют длинную волну (315-380 нм), не позволяют растению чрезмерно «вытягиваться» и отвечают за синтез ряда витаминов. В то же время ультрафиолетовые лучи, которые имеют длину волны 280-315 нм, могут повышать холодостойкость растений.

Таким образом, жизненно важными для развития растений не являются только желтые и зеленые лучи (565-490 нм).

Следовательно, при организации искусственного осветления растений необходимо в первую очередь учитывать их потребность в особенном спектре света.

Данный спектр, нужный растению выдаю специльно разработанные лампы для досветки растений, которые вы можете приобрести в нашем магазине в разделе

Если рассматривать растения с точки зрения их «отношения» к свету, то их принято делить на три категории:

Светолюбивые

Теневыносливые

Тенеиндифферентные.

Для выращивания растений круглый год в условиях своей квартиры приобретайте -

Популярные статьи

Сектор промышленных цветочных теплиц, использующий метод интенсивной светокультуры растений, является одним из самых энергоёмких (по удельным электрическим параметрам) и, одновременно, самых энергоэффекивных, среди различных областей использования искусственного освещения.

Гидропоника дает основу для получения более высокой урожайности от культивируемых растений по сравнению с обычными способами выращивания. На сегодняшний день вы найдете выращенные гидропонным методом зелень, ягоды, овощи в любом среднем или крупном супермаркете.

Какими должны быть современные Лампы для растений? В сельском хозяйстве индукционные лампы для растений широко используются в теплицах и других местах, где необходимо заменить, либо дополнить естественное солнечное освещение при выращивании различных типов сельскохозяйственных культур, таких как фрукты, овощи, зелень или цветы.

В светильнике ПРА встроенного исполнения, Конденсаторы компенсации реактивной мощности и ИЗУ расположены в едином уплотненном корпусе, состыкованным с арматурой для крепления патрона с лампой и отражателем.

Глобальное и круглогодичное выращивание необходимых растительных продуктов в условиях всевозрастающего жизнеобеспечения 7-10 миллиардного населения земли в XXI веке в значительной мере зависит от продвинутого защищенного грунта, а, следовательно, и расширения использования искусственного света в нем.

Производительность всей системы выращивания определяет количественный критерий оценки – например, полезная масса сухого вещества или объем целевого экстракта из листьев/корней. Для качественной оценки можно анализировать химический состав растений и морфология (отклонение формы и размеров стебля/листьев/плода).

Для большинства культур лучший урожай и качество продукции могут быть получены при обеспечении растениям комфортных условий, где все основные физиологические потребности максимально приближены к естественным уровням.

Таким образом, в большинстве практических задач за эталон для сравнения и оценки результатов искусственного выращивания можно брать растение, выращенное в естественных условиях. Естественные условия для конкретной культуры, как правило, соответствуют климату в регионе его изначального происхождения.

Основы

Рассматривая процесс выращивания растений как замкнутую систему, можно выделить следующие основные факторы, влияющие на результат (см. рис. 1):

Солнечный свет, основной источник энергии
- содержание диоксид углерода (СО2) в воздухе (углерод - основной элемент, используемый для формирования новых клеток)
- вода, в основном, как источник кислорода, входящего в ее состав, необходимого для реакции фотосинтеза
- температура окружающего воздуха.

Рис. 1

Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20-25°С. Например, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза.

Так, при фотосинтезе за счет энергии света происходит образование органических веществ (углеводов) при участии хлорофилла. Хлорофилл (от греч. χλωρός, «зелёный» и φύλλον, «лист») - зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет .

Таким образом, количество света является важным фактором, влияющим на интенсивность роста растений.

Также на протяжении многих лет эволюции этот процесс адаптировался к суточному циклу “день/ночь”. Днем под воздействием света вода разделяется на кислород и водород, а растение запасает энергию и питательные вещества. Ночью, в темноте углекислый газ под воздействием запасенной энергии соединяется с водородом, образуя молекулы углеводов, т.е. происходит собственно рост культуры.

Таким образом, при искусственном выращивании растений важно обеспечить не только высокую освещенность, но и правильную цикличность включения света, чтобы получить лучший результат.

О спектрах

Современные светодиодные технологии позволяют форматировать сложные спектры освещения растений. Рассмотрим, каким образом спектр влияет на процесс роста.

На рис. 2 детально показаны энергетические спектры поглощения базовых пигментов растения.


Рис. 2

Видно, что помимо традиционно упоминаемых пигментов хлорофилла с пиками поглощения в диапазоне 400-500 нм и 650-700 нм, на процессы роста также влияют вспомогательные пигменты из семейства светособирающих фикобилипротеинов.

В некоторых исследованиях спектры поглощения основных пигментов суммируются для формирования “универсального” спектра, форма которого показана на рис. 3.


Рис. 3

Для количественной оценки светового воздействия на растения используется фотосинтетически активная радиация (ФАР). В англоязычной литературе - Photosynthetic Photon Flux (PPF). Поток ФАР/PPF измеряется как число фотонов, излучаемых источником света, которые могут быть поглощены растением при фотосинтезе (диапазон длин волн от 400 до 700 нм).

Величина PPF рассчитывается без учета неравномерного поглощения растением различных энергии различных длин волн. Поэтому в дополнение к PPF иногда используется величина YPF – Yield Photon Flux - т.н. усваиваемый растением поток фотонов. Для расчета YPF используется взвешенное значение ФАР и спектр эффективности фотосинтеза как весовые коэффициенты.

Спектр эффективности фотосинтеза показан на рис. 4.


Рис. 4

Кривая весового коэффициента для фотонов (Photon-weighted) позволяет перевести PPFD в YPF; кривая весового коэффициента энергии (energy-weighted) позволяет сделать то же самое для ФАР, выраженной в ваттах или джоулях.

Рассмотрим подробнее, как влияет на растения излучение в различных участках этого диапазона.

Ультрафиолет C (280 - 315 нм)

Облучение растений таким излучением имеет негативные последствия, может приводить к гибели клеток и обесцвечиванию листьев/плодов.

Ультрафиолет B (315- 380 нм)

Это излучение не имеет видимого эффекта на растения.

Ультрафиолет A (380 - 430 нм)

Передозировка ультрафиолетового излучения может быть опасна для листвы, однако малые дозы излучения поглощаются в процессе цветения и созревания плодов и влияют на цвет и биохимический состав (вкус). Как правило, дозы, получаемые растением под воздействием естественного света, достаточны для поддержания этих процессов.

Синий свет (430-450 нм)

Как показано выше, эта часть спектра хорошо поглощается большинством основных пигментов растения. Эта часть спектра может влиять на морфологию растения: размер и форму куста/листьев, длину стебля. Ряд исследований показывает лучшую эффективность синего цвета на раннем этапе развития растения (вегетативная фаза).
Синий свет способствует открытию устьиц, увеличению количества белка, синтезу хлорофилла, делению и функционированию хлоропластов, сдерживанию роста стебля.

Зеленый свет (500-550 нм)

Значительная часть этого диапазона отражается от листьев, однако нельзя недооценивать роль и этого участка спектра на полноценное развитие растений. Так, например зеленое излучение, отражаясь от верхних листьев растения, обладает лучшей проникающей способностью и способствует более равномерному развитию листьев, на нижних уровнях, находящихся в тени более крупных соседей (рис. 5) .


Рис. 5

Также, управление уровнем зеленого в спектре облучения позволяет контролировать время наступления и длительность фаз прорастания и цветения.

Оранжевый свет (550-610 нм)

С точки зрения рассмотренных выше спектров поглощения хлорофиллов, этот диапазон имеет незначительный уровень отклик. Однако, успешный опыт применения натриевых ламп, излучение которых в основном лежит в этом диапазоне, подтверждает, что фактически растения способны развиваться даже при не оптимальном спектральном составе освещения.

Красный (610-720 нм)

Наиболее эффективный диапазон, с точки зрения количества фотонов, поглощаемых растением в процессе на всех этапах развития.
Красный свет способствует цветению, прорастанию почек, росту стеблевых листьев, опадению листьев, спячке почек, этиоляции и т.д.

Дальний красный (720-1000 нм)

Несмотря на незначительный отклик в спектрах поглощения основных пигментов, дальний красный диапазон выполняет своего рода “сигнальную” функцию – как и в случае с зеленым цветом, корректировка уровня дальнего красного позволяет повлиять на время наступления и длительность фазы цветения и плодоношения.

Инфракрасный (1000 нм и выше)

Все излучение в этом диапазоне конвертируется в тепло, дополнительно влияющее на температуру растения.

Следует помнить, что для естественного солнечного света более 50% энергии излучается именно в инфракрасном диапазоне. Если растение в искусственных условиях облучается только в диапазоне 400-700 нм, то нужно дополнительно предусмотреть запас мощности в системе отопления для поддержания комфортной температуры.


Потребности растения на разных этапах роста

Как было отмечено выше, свет является не только источником энергии, контролирующим фотосинтез. Различные участки спектра воспринимается растением как сигналы, влияющие на многие аспекты роста и развития (прорастания, деэтиоляция) Изменения в развитии растений, связанные со светом являются результатом фотоморфогенеза.

На схеме на рис.6 показаны основные эффекты, стимулируемые различными цветами на протяжении жизненного цикла растения.


Рис. 6

Рассмотрим более подробно влияние света на различных этапах

Синтез хлорофилла

Самое большое количество хлорофилла вырабатывается при синем свете, меньшее – при белом и красном, самое меньшее - при зеленом свете и в тени. При разном свете, соотношение хлорофилла A и B также не одинаковое. Самая большая разница в соотношении А и B при желтом и синем свете. Красный свет способствует большой выработке хлорофилла типа A.

Для светолюбивых растений подходит синий свет, для тенелюбивых растений подходит красный свет.

Цветение

Соотношение между длительностью светового периода и периода темноты называется фотопериодом. Общая протяженность суток – 24 часа, однако в зависимости от разной широты и времени года, протяженность дня и ночи неодинаковая. В зависимости от разных климатических условий и места произрастания, фотопериод у разных растений неодинаков. Цветение, опадение листьев, спячка почек – всё это является реакцией растения на изменение фотопериода.

Растения, которые готовы начать цвести, зацветут при наступлении подходящего фотопериода. Количество дней до начала цветения определяется возрастом растения. Чем старше растение, тем оно быстрее зацветет. Под воздействием фотопериода оказываются листья растений. Чувствительность листьев к изменению фотопериода связана с возрастом растения. Чувствительность старых листьев и молодых листьев неодинаковая. Наиболее чувствительными к изменению фотопериода являются растущие листья.

Накопление питательных веществ и рост растений регулируются излучением в красном и дальним красном диапазоне. Размножение определяется, синим светом. Фитохром, содержащийся в листьях, может принимать сигналы красного света и дальнего света. Растение готовое к цветению, зацветет, если последнее излучение будет красным дальним светом.

На рис. 7 показаны спектры поглощения растений при синтезе хлорофилла, фотосинтезе и фотоморфогенезе.


Рис. 7

Светодиоды

Современные мощные светодиоды, применяемые в искусственном освещении растений, позволяют сформировать монохромное излучение фактически в любой части спектра, рассмотренной выше.
Примеры спектров светодиодов показаны на рис. 8


Рис. 8

Стоит отметить светодиоды с длиной волны 450 нм (“глубокий синий”) и 660 нм (“дальний красный”), как составляющие, совпадающие с пиками поглощения хлорофиллов. Как было отмечено выше, наличие светодиодов пиком излучения в других частях спектра, позволяет дополнительно стимулировать другие участки спектра поглощения. Белые люминофорные светодиоды (серая кривая на рис. 8) имеют в составе своего спектра относительно широкую область излучения люминофора, а также синий пик непоглощенного люминофором излучения синего кристалла.

Комбинация светодиодов различных цветов в одном светильнике с возможностью независимого управления позволяет сформировать фактически любой спектр для конкретной культуры и фазы ее развития.
Примеры спектров, используемых в различных сценариях освещения растений,показаны на рис. 9

Рис. 9

Отдельно стоит рассмотреть спектр облучения, получаемый растением, когда на него воздействует одновременно естественное излучение и излучение системы светодиодной досветки.
Предположим. что в светильнике для досветки используются синие и красные светодиоды в соотношении примерно 1:2 (по уровню энергии), для стимуляции хлорофиллов на стадии вегетативного роста.

Пример такого спектра показан на рис. 10


Рис. 10

В реальности же на листья растений будет также воздействовать спектр солнечной радиации, и суммарный спектр облучения будет выглядеть следующим образом (рис. 11).


Рис. 11

Видно, что в этом случае растение монохромная досветка в сочетании с широкополосным естественны излучением дает спектр, стимулирующий все основные зоны поглощения растений. Результирующий спектр по форме близок к суммарному спектру поглощения всех основных пигментов растения, рассмотренному выше.

Заключение

Подводя итоги данного обзора можно отметить следующее:

Спектральный состав света является важным фактором для продуктивного выращивания культур в искусственных условия, однако, не первичным. Получить прирост урожая за счет оптимизации спектра можно при обеспечении растению достаточного уровня базовых потребностей (температура, вода, CO2, вентиляция). Количество света также является более приоритетным параметром по сравнению с его спектральным составом.

Современные светодиоды позволяют эффективно сформировать излучение в спектральном диапазоне поглощения растений. Причем возможно применение т.н. монохромных светодиодов с различными цветами (длиной волны излучения) и традиционных белых “люминофорных” светодиодов, обеспечивающих равномерное широкополосное излучение.

Наличие в светильнике светодиодов с различными цветами и технологии независимого управления ими позволяет исследовать влияние спектра на эффективность выращивание отдельно взятой культуры в конкретных условиях и выработать оптимальный баланс цветов для лучшей урожайности.

Список литературы

Физиология растений. Н.И. Якушкина. Издательство: "Владос". Год: 2004

Исследования над образованием хлорофилла у растений. Монтеверде Н. А., Любименко В. Н. Известия Императорской Академии наук. VII серия. - СПБ., 1913. - Т. VII, № 17. - С. 1007–1028.

Создание эффективных светодиодных фитосветильников. Cакен Юсупов, Михаил Червинский, Екатерина Ильина, Владимир Смолянский. Полупроводниковая светотехника N6’2013

Contributions of green light to plant growth and development. Wang, Y. & Folta, K. M. Am. J. Bot. 100, 70-78 (2013).

Ответ на этот вопрос кажется очевидным. Растениям нужен солнечный свет, а если это искусственный свет, то, наверное, спектр излучения "хорошей" лампы должен быть как можно ближе к солнечному. Так ли это?

Лучевая энергия солнца, которая доходит до поверхности земли, состоит из ультрафиолетового излучения (длина волны короче 380 нм), видимого света (от 380 нм до 780 нм) и инфракрасного, т.е. теплового излучения (длина волны больше 780 нм). Пик солнечного света лежит в голубой части спектра при 475 нм.

Глаз человека не воспринимает ни ультрафиолетовые, ни инфракрасные волны, а из видимого спектра наиболее чувствителен к желто-зеленому (555 нм) свету. Красный свет (650 нм) человеческий глаз чувствует в 10 раз хуже, т.е. нужно в 10 раз больше красного света, чем зеленого, чтобы человек воспринял оба света как равные по интенсивности.

А к какому свету более всего чувствителен "глаз" растения, т.е. хлорофилл и другие пигменты, улавливающие свет для фотосинтеза? Наиболее активно фотосинтез идет под действием оранжево- красного света (610-700 нм) с максимумом в красной зоне (675 нм). Второй пик активности находится в сине-голубой части спектра (400-510 нм). Рост растений обеспечивается фотосинтезом, значит, растениям в первую очередь требуется свет, обогащенный теми длинами волн, которые нужны для фотосинтеза.

Таким образом, лампа для освещения рассады совсем не обязательно должна имитировать солнечный свет. Желательно использовать более экономичные лампы, спектр излучения которых обогащен красным и синим светом.