Меню

Численная последовательность фибоначчи. История применения золотых пропорций

Устройство крыши

Про числа и формулы, которые встречаются в природе. Ну и пару слов про эти самые числа и формулы.

Числа и формулы в природе — это камень преткновения между теми, кто верит в создание вселенной кем-то, и теми, кто верит в создание вселенной самой по себе. Ибо вопрос: «Если бы вселенная возникла сама по себе, то разве практически все живые и неживые обЪекты не были бы построены по одной и той же схеме, по одним и тем же формулам?»

Ну, на этот философский вопрос мы отвечать здесь не будем (формат сайта не тот 🙂), а формулы озвучим. И начнём с чисел Фибоначчи и Золотой спирали.

Так, числа Фибоначчи — это элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. То есть, 0 +1=1, 1+1=2, 2+1=3, 3+2=5 и так далее.

Итого, получается ряд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946

Ещё один пример ряда Фибоначчи: 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 и так далее. Можете поэкспериментировать сами 🙂

Как числа Фибоначчи проявляются в природе? Очень просто:

  1. Листорасположение у растений описывается последовательностью Фибоначчи. Семена подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи.
  2. Длины фаланг пальцев человека относятся примерно как числа Фибоначчи.
  3. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.

С помощью чисел Фибоначчи можно построить Золотую Спираль. Так, нарисуем маленький квадратик со стороной, скажем, в 1. Далее вспомним школу. Сколько будет 1 2 ? Это будет 1. Значит, нарисуем ещё один квадратик рядом с первым, вплотную. Далее, следующее число Фибоначчи — 2 (1+1). Сколько будет 2 2 ? Это будет 4. Нарисуем вплотную к первым двум квадратам ещё один квадрат, но теперь со стороной 2 и площадью 4. Следующее число — это число 3 (1+2). Квадрат числа 3 — это 9. Рисуем квадрат со стороной 3 и площадью 9 рядом с уже нарисованными. Далее у нас идёт квадрат со стороной 5 и площадью 25, квадрат со стороной 8 и площадью 64 — и так далее, до бесконечности.

Настало время для золотой спирали. Соединим плавной кривой линией точки-границы между квадратами. И получим ту самую золотую спираль, на основе которой строятся многие живые и неживые обЪекты в природе.

И перед тем, как переходить к золотому сечению, подумаем. Вот мы построили спираль на основе квадратов последовательности Фибоначчи (последовательность 1, 1, 2, 3, 5, 8 и квадраты 1, 1, 4, 9, 25, 64). Но что будет, если мы воспользуемся не квадратами чисел, а их кубами? Кубы будут выглядеть из центра так:

А сбоку так:

Ну а при построении спирали, получится обЪёмная золотая спираль :

Вот так эта обЪёмная золотая спираль выглядит сбоку:

Но что если мы возьмём не кубы чисел Фибоначчи, а перейдём в четвёртое измерение?.. Вот это головоломка, да?

Однако, понятия не имею, как в природе проявляется обЪёмное золотое сечение на основе кубов чисел Фибоначчи, а уж тем более чисел в четвёртой степени. Поэтому возвращаемся к золотому сечению на плоскости. Так, снова посмотрим на наши квадраты. Если говорить математически, то получается вот такая вот картинка:

То есть, мы получаем золотое сечение — где одна сторона делится на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

То есть, a: b = b: c или с: b = b: а.

На основе такого вот отношения величин строится, помимо прочего, правильный пятиугольник и пентаграмма:

Для справки: для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471…1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

В общем, такие вот закономерности. Причём разнообразных закономерностей намного больше, чем было описано. И теперь, после всех этих скучноватых чисел — обещанный видео-ролик, где всё просто и наглядно:

Как видите, математика действительно присутствует в природе. Причём не только в перечисленных в видео обЪектах, но и во многих других областях. Например, когда волна набегает на берег и закручивается, то закручивается она по Золотой спирали. Ну и так далее 🙂

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи «Мона Лиза», подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи (род. ок. 1170 — умер после 1228) , итальянский математик . Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад.

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел.

Итак, числа, образующие последовательность:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, …

называются «числами Фибоначчи», а сама последовательность — последовательностью Фибоначчи .

В числах Фибоначчи существует одна очень интересная особенность. При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875… и через раз то пpевосходящая, то не достигающая его. (Прим. иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение, золотое сpеднее или золотая пропорция . В алгебpе это число обозначается гpеческой буквой фи (Ф)

Итак, Золотая пропорция = 1: 1,618

233 / 144 = 1,618

377 / 233 = 1,618

610 / 377 = 1,618

987 / 610 = 1,618

1597 / 987 = 1,618

2584 / 1597 = 1,618

Тело человека и золотое сечение

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта «Строительное проектирование» содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы:

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

* расстояние от кончиков пальцев до запястья до локтя равно 1:1.618;

* расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618;

* расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618;

* расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618;

* расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618;

* расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618;

* расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618:

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей. Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой. Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально.

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

* Высота лица / ширина лица;

* Центральная точка соединения губ до основания носа / длина носа;

* Высота лица / расстояние от кончика подбородка до центральной точки соединения губ;

* Ширина рта / ширина носа;

* Ширина носа / расстояние между ноздрями;

* Расстояние между зрачками / расстояние между бровями.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

* Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца);

* Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения;

* У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи:

Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

* Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали

Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168: 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так:

«Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее.»

В природе

* Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры — спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.;

* Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи, а стало быть, проявляется закон золотого сечения;

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.

Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль.

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

«Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте.»

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением.

Биолог Сэр Д`арки Томпсон этот вид роста морских раковин называет «форма роста гномов».

Сэр Томпсон делает такой комментарий:

«Нет более простой системы, чем рост морских ракушек, которые растут и расширяются соразмерно, сохраняя ту же форму. Раковина, что самое удивительное, растет, но никогда не меняет формы.»

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

«Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется.»

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями:
Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции.

Золотое сечение в ухе человека

Во внутреннем ухе человека имеется орган Cochlea («Улитка»), который исполняет функцию передачи звуковой вибрации . Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Рога и бивни животных, развивающиеся в форме спирали

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль. Пауки всегда плетут свои паутины в виде логарифмической спирали. Строение таких микроорганизмов, как планктоны (виды globigerinae, planorbis, vortex, terebra, turitellae и trochida) также имеют форму спирали.

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно . К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов — вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

«Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц.»

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.

Однако, это не все, что можно сделать с золотым сечением. Если единицу разделить на 0,618 то получается 1,618, если возведем в квадрат, то у нас получится 2,618, если возведем в куб, то получим число 4,236. Это коэффициенты расширения Фибоначчи. Тут не хватает только числа 3,236, которое было предложено Джоном Мёрфи.


Что думают о последовательности специалисты

Кто-то скажет, что эти числа уже знакомы, потому что они используются в программах технического анализа, для определения величины коррекции и расширения. Кроме того эти же ряды играют важную роль в волновой теории Элиота. Они являются его числовой основой.

Наш эксперт Николай Проверенный портфельный менеджер инвестиционной компании Восток.

  • — Николай, как вы думаете, случайно ли появление чисел Фибоначчи и его производных на графиках различных инструментов? И можно ли сказать: «Ряд Фибоначчи практическое применение» имеет место?
  • — К мистике отношусь плохо. А на графиках биржи тем более. У всего есть свои причины. в книге «Уровни Фибоначчи» красиво рассказывал, где появляется золотое сечение, что не стал удивляться тому, что оно появилось на графиках котировок биржи. А зря! Во многих примерах, которые он привел, часто появляется число Пи. Но его почему-то нет в ценовых соотношениях.
  • — То есть вы не верите в действенность волнового принципа Элиота?
  • — Да нет же, не в этом дело. Волновой принцип – это одно. Численное соотношение – это другое. А причины их появления на ценовых графиках – третье
  • — Каковы на ваш взгляд причины появления золотого сечения на биржевых графиках?
  • — Правильный ответ на этот вопрос может быть в силах заслужить Нобелевскую премию по экономике. Пока мы можем догадываться об истинных причинах. Они явно не в гармонии природы. Моделей биржевого ценообразования много. Они не объясняют обозначенный феномен. Но не понимание природы явления не должно отрицать явление как таковое.
  • — А если когда – либо этот закон будет открыт, то сможет ли это разрушить биржевой процесс?
  • — Как показывает та же теория волн закон изменения биржевых цен – это чистая психология. Мне кажется, знание данного закона ничего не изменит и не сможет разрушить биржу.

Материал предоставлен блогом веб-мастера Максима.

Совпадения основ принципов математики в самых разных теориях кажется невероятным. Может быть это фантастика или подгонка под конечный результат. Поживем — увидим. Многое из того, что раньше считалось необычным или было не возможно: освоение космоса, например, стало привычным и никого не удивляет. Также и волновая теория, может быть непонятная, со временем станет доступней и понятней. То, что раньше было не нужным, в руках аналитика с опытом станет мощным инструментом прогнозирования дальнейшего поведения .

Числа Фибоначчи в природе.

Смотреть

А теперь, давайте поговорим о том, как можно опровергнуть то, что цифровой ряд Фибоначчи причастен к каким-либо закономерностям в природе.

Возьмем любые другие два числа и выстроим последовательность с той же логикой, что и числа Фибоначчи. То есть, следующий член последовательности равен сумме двух предыдущих. Для примера возьмем два числа: 6 и 51. Теперь выстроим последовательность, которую завершим двумя числами 1860 и 3009. Заметим, что при делении этих чисел, мы получаем число близкое золотому сечению.

При этом числа, которые получались при делении других пар уменьшались от первых к последним, что позволяет утверждать, что если этот ряд продолжать бесконечно, то мы получим число равное золотому сечению.

Таким образом, числа Фибоначчи ни чем сами по себе не выделяются. Существует другие последовательности чисел, которых бесконечное множество, что дают в результате тех же операций золотое число фи.

Фибоначчи не был эзотериком. Он не хотел вложить никой мистики в числа, он просто решал обыкновенную задачу о кроликах. И написал последовательность чисел, которые вытекали из его задачи, в первый, второй и другие месяца, сколько будет кроликов после размножения. В течение года он получил ту самую последовательность. И не делал отношений. Никакой золотой пропорции, Божественном отношении речи не шло. Все это было придумано после него в эпоху Возрождения.

Перед математикой достоинства Фибоначчи огромны. Он от арабов перенял систему чисел и доказал её справедливость. Была тяжелая и долгая борьба. От римской системы счисления: тяжелой и неудобной для счета. Она исчезла после французской революции. Никакого отношения именно к золотому сечению Фибоначчи не имеет.

Спиралей бесконечно много, наиболее популярны: спираль натурального логарифма, спираль Архимеда, гиперболическая спираль.

А теперь давайте взглянем на спираль Фибоначчи. Данный кусочно-составной агрегат складывается из нескольких четвертей окружностей. И не является спиралью, как таковой.

Вывод

Как бы долго мы не искали подтверждение или опровержение применимости ряда Фибоначчи на бирже, такая практика существует.

Огромные массы людей действуют согласно линейке Фибоначчи, которая находится во многих пользовательских терминалах. Поэтому хотим мы или нет: числа Фибоначчи оказывают влияние на , а мы можем воспользоваться этим влиянием.

В обязательном порядке читаем статью — .