Меню

Примеры полупроводников. Типы, свойства, практическое применение

Устройство крыши

В этой статье ну нет ничего экстраординарно важного и интересного, только ответ на простой вопрос для "чайников", какие основные свойства отличают полупроводники от металлов и диэлектриков?

Полупроводники - материалы (кристаллы, поликристаллические и аморфные материалы, элементы или соединения) с существованием запрещенной зоны (между зоной проводимости и валентной зоной).

Электронными полупроводниками называют кристаллы и аморфные вещества, которые по величине электропроводности занимают промежуточное положение между металлами (σ = 10 4 ÷10 6 Ом -1 ·см -1) и диэлектриками (σ = 10 -10 ÷10 -20 Ом -1 ·см -1). Однако приведённые граничные значения проводимости весьма условны.

Зонная теория позволяет сформулировать критерий, который даёт возможность разделить твёрдые тела на два класса - металлы и полупроводники (изоляторы). Металлы характеризуются наличием в валентной зоне свободных уровней, на которые могут переходить электроны, получающие дополнительную энергию, например, вследствие ускорения в электрическом поле. Отличительная особенность металлов заключается в том, что у них в основном, невозбуждённом состоянии (при 0 К) имеются электроны проводимости, т.е. электроны, которые участвуют в упорядоченном движении по действием внешнего электрического поля.

У полупроводников и изоляторов при 0 К валентная зона заселена полностью, а зона проводимости отделена от неё запрещённой зоной и не содержит носителей. Поэтому не слишком сильное электрическое поле не в состоянии усилить электроны, расположенные в валентной зоне, и перевести их в зону проводимости. Иными словами, такие кристаллы при 0 К должны быть идеальными изоляторами. При повышении температуры или облучении подобного кристалла электроны могут поглотить кванты тепловой или лучистой энергии, достаточные для перехода в зону проводимости. В валентной зоне при этом переходе появляются дырки, которые также могут участвовать в переносе электричества. Вероятность перехода электрона из валентной зоны в зону проводимости пропорциональна ( g / kT ), где Е g - ширина запрещённой зоны. При большой величине Е g (2-3 эВ) эта вероятность оказывается очень малой.

Таким образом, подразделение веществ на металлы и неметаллы имеет вполне определённую основу. В отличие от этого деление неметаллов на полупроводники и диэлектрики такой основы не имеет и является чисто условным.

Ранее считали, что к диэлектрикам можно отнести вещества с величиной запрещённой зоны Е g ≈ 2÷3 эВ, однако позже выяснилось, что многие из них являются типичными полупроводниками. Более того, было показано, что в зависимости от концентрации примесей или избыточных (сверх стехиометрического состава) атомов одного из компонентов один и тот же кристалл может быть и полупроводником, и изолятором. Это относится, например, к кристаллам алмаза, оксида цинка, нитрида галлия и т.д. Даже такие типичные диэлектрики как титанаты бария и стронция, а также рутил при частичном восстановлении приобретают свойства полупроводников, что связано с появлением в них избыточных атомов металлов.

Деление неметаллов на полупроводники и диэлектрики также имеет определённый смысл, поскольку известен целый ряд кристаллов, электронную проводимость которых не удается заметно повысить ни путём введения примесей, ни путём освещения или нагрева. Это связано либо с очень малым временем жизни фотоэлектронов, либо с существованием в кристаллах глубоких ловушек, либо с очень малой подвижностью электронов, т.е. с чрезвычайно низкой скоростью их дрейфа в электрическом поле.

Электропроводность пропорциональна концентрации n, заряду e и подвижности носителей заряда. Поэтому температурная зависимость проводимости различных материалов определяется температурными зависимостями указанных параметров. Для всех электронных проводников заряд е постоянен и не зависит от температуры. В большинстве материалов величина подвижности обычно слабо уменьшается с ростом температуры из-за увеличения интенсивности столкновений между движущимися электронами и фононами, т.е. из-за рассеяния электронов на колебаниях кристаллической решётки. Поэтому различное поведение металлов, полупроводников и диэлектриков связано в основном с концентрацией носителе заряда и её температурной зависимостью:

1) в металлах концентрация носителей заряда n велика и слабо изменяется при изменении температуры. Переменной величиной, входящей в уравнение для электропроводности, является подвижность. А поскольку подвижность слабо уменьшается с температурой, то также уменьшается и электропроводность;

2) в полупроводниках и диэлектриках n обычно экспоненциально растёт с температурой. Этот стремительный рост n вносит наиболее существенный вклад в изменение проводимости, чем уменьшение подвижности. Следовательно, электропроводность быстро увеличивается с повышением температуры. В этом смысле диэлектрики можно рассматривать как некоторый предельный случай, так как при обычных температурах величина n в этих веществах крайне мала. При высоких температурах проводимость отдельных диэлектриков достигает полупроводникового уровня из-за роста n . Наблюдается и обратное - при низких температурах некоторые полупроводники становятся диэлектриками.

Список литературы

  1. Вест А. Химия твердого тела. Ч.2 Пер. с англ. - М.: Мир, 1988. - 336 с.
  2. Современная кристаллография. Т.4. Физические свойства кристаллов. - М.: Наука, 1981.

Студенты 501 группы химического факультета: Беззубов С.И., Воробьева Н.А., Ефимов А.А.

В промышленности и энергетической микроэлектронике широкое распространение получили различные виды полупроводников. С их помощью, одна энергия может превращаться в другую, без них не будут нормально работать многие электронные устройства. Существует большое количество типов данных элементов, в зависимости от принципа их работы, назначения, материала, конструктивных особенностей. Для того, чтобы понять порядок действия полупроводников, необходимо знать их основные физические свойства.

Свойства и характеристики полупроводников

Основные электрические свойства полупроводников позволяют рассматривать их, как нечто среднее, между стандартными проводниками и материалами, не проводящими электрический ток. Полупроводниковая группа включает в себя значительно больше разных веществ, чем общее количество .

Широкое распространение в электронике получили полупроводники, изготовленные из кремния, германия, селена и прочих материалов. Их основной характеристикой считается ярко выраженная зависимость от воздействия температуры. При очень низких температурах, сравнимых с абсолютным нулем, полупроводники приобретают свойства изоляторов, а при повышении температуры, их сопротивление уменьшается с одновременным повышением проводимости. Свойства этих материалов могут изменяться и под действием света, когда происходит значительное увеличение фотопроводности.

Полупроводники преобразуют световую энергию в электричество, в отличие от проводников, не обладающих этим свойством. Кроме того, увеличению электропроводности способствует введение в полупроводник атомов определенных элементов. Все эти специфические свойства позволяют использовать полупроводниковые материалы в различных сферах электроники и электротехники.

Виды и применение полупроводников

Благодаря своим качествам, все виды полупроводников разделяются на несколько основных групп.

Диоды . Включают в себя два кристалла из полупроводников, имеющих разную проводимость. Между ними образуется электронно-дырочный переход. Они производятся в различном исполнении, в основном, точечного и плоского типа. В плоских элементах, кристалл германия сплавлен с индием. Точечные диоды состоят из кристалла кремния и металлической иглы.

Транзисторы . Состоят из кристаллических полупроводников в количестве трех штук. Два кристалла обладают одинаковой проводимостью, а в третьем, проводимость имеет противоположное значение. Они называются коллектором, базой и эмиттером. В электронике, усиливает электрические сигналы.

Тиристоры . Представляют собой элементы, преобразующие электричество. Они имеют три электронно-дырочных перехода с вентильными свойствами. Их свойства позволяют широко использовать тиристоры в автоматике, вычислительных машинах, приборах управления.

Чем полупроводник отличается от изоляторов и проводников

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.

Свое название полупроводники получили оттого, что они занимают промежуточное место между проводниками (металлы, электролиты, уголь), обладающими большой электропроводимостью, и изоляторами (фарфор, слюда, резина и другие), которые почти не проводят электрического тока.

Если сравнить удельное объемное сопротивление в Ом × см для различных веществ, то окажется, что проводники имеют: ρ U = 10 -6 - 10 -3 Ом × см; удельное сопротивление полупроводников: ρ U = 10 -3 - 10 8 Ом × см; а у диэлектриков: ρ U = 10 8 - 10 20 Ом × см. К полупроводникам относятся: окислы металлов - оксиды (Al 2 O 3 , Cu 2 O, ZnO, TiO 2 , VO 2 , WO 2 , MoO 3); сернистые соединения - сульфиды (Cu 2 S, Ag 2 S, ZnS, CdS, HgS); соединения с селеном - селениды; соединения с теллуром - теллуриды; некоторые сплавы (MgSb 2 , ZnSb, Mg 2 Sb, CdSb, AlSb, ClSb); химические элементы - германий, кремний, теллур, селен, бор, углерод, сера, фосфор, мышьяк, а также большое число сложных соединений (гален, карборунд и другие).

Рисунок 1. Германий

Рисунок 2. Кремний


Рисунок 3. Теллур

Полное и широкое исследование свойств полупроводников выполнено советским ученым А. Ф. Иоффе и его сотрудниками.

Электрические свойства полупроводников резко отличаются от свойств проводников и изоляторов. Электропроводимость проводников в сильной степени зависит от температуры, освещённости, наличия и интенсивности электрического поля, количества примесей. При обычной температуре в полупроводниках есть некоторое количество свободных электронов, образовавшихся вследствие разрыва электронных связей. У полупроводников различают два вида проводимости: электронную и дырочную. Носителями заряда в полупроводниках при электронной проводимости являются свободные электроны, а при дырочной - связи, лишенные электронов.

Рассмотрим следующий опыт. Возьмем металлический проводник и будем нагревать один его конец, тогда нагретый конец проводника получит положительный заряд. Это объясняется перемещением электронов от горячего конца к холодному, в результате чего на горячем конце проводника получается недостаток электронов (положительный заряд), а на холодном конце избыток электронов (отрицательный заряд). Кратковременное протекание тока по проводнику было вызвано перемещением электронов с одного края проводника на другой. Таким образом, здесь речь идет о проводнике с электронной проводимостью. Однако существуют вещества, которые при подобном опыте ведут себя иначе: нагретый край такого вещества получает отрицательный заряд, а холодный край - положительный заряд. Это возможно, если предположить, что перенос тока осуществляется положительными зарядами.

Рисунок 4. Связь между атомами вещества

Рисунок 5. Собственная проводимость полупроводников
Рисунок 6. Электронная проводимость полупроводника
Рисунок 7. Дырочная проводимость полупроводника

Познакомимся с другим видом проводимости у полупроводников - дырочной проводимостью. В чистых полупроводниках все электроны, слабо связанные с ядрами, участвуют в электронных связях. На рисунке 4, а условно показана заполненная связь между атомами вещества. "Дыркой" называется элемент кристаллической решетки вещества, потерявший электрон, что соответствует появлению положительного заряда (рисунок 4, б ).

Освободившаяся связь может вновь оказаться заполненной, если "дырка" захватит электрон из соседней связи (рисунок 4, в ). Это вызовет переход "дырки" на новое место. В веществе полупроводника, находящегося в нормальных условиях, направление вылета электронов и место образования "дырки" носят хаотический характер. Если к чистому полупроводнику приложить постоянное напряжение, то электроны и "дырки" будут перемещаться (первые против направления сил поля, вторые в противоположном направлении). Если число образующихся "дырок" будет равно числу освободившихся электронов, то, как это бывает у чистых полупроводников, проводимость полупроводников невелика (собственная проводимость). Наличие даже небольшого количества посторонних примесей может изменить механизм электропроводимости: сделать его электронным или дырочным. Рассмотрим конкретный пример. В качестве полупроводника возьмем германий (Ge). В кристалле германия каждый атом связан с четырьмя другими атомами. При увеличении температуры или в результате облучения парные связи кристалла могут быть нарушены. При этом образуется равное количество электронов и "дырок" (рисунок 5).

Добавим к германию в качестве примеси мышьяк. Такая примесь обладает большим числом слабосвязанных электронов. Атомы примеси имеют свой энергетический уровень, располагающийся между энергетическими уровнями свободной и заполненной зон, ближе к последней (рисунок 6). Подобные примеси отдают свои электроны в свободную зону и называются донорными примесями. В полупроводнике окажется наличие свободных электронов, в то время как все связи будут заполнены. Полупроводник будет обладать электронной проводимостью в свободной зоне.

Если теперь в качестве примеси к германию добавит не мышьяк, а индий, то произойдет следующее. Такая примесь обладает малым числом слабо связанных электронов, а энергетический уровень примеси располагается между энергетическими уровнями свободной и заполненной зон, ближе к свободной зоне (рисунок 7). Примеси этого рода принимают в свою зону электроны из соседней заполненной зоны и называются акцепторными примесями. В полупроводнике окажутся незаполненные связи - "дырки" при отсутствии свободных электронов. Полупроводник будет обладать дырочной проводимостью в заполненной зоне.

Теперь станет понятным опыт нагрева полупроводника, когда нагретый конец получал отрицательный заряд, а холодный конец - положительный заряд. Под действием тепла на горячем конце начнут разрушаться связи, возникнут "дырки" и свободные электроны. Если полупроводник содержит примеси, то "дырки" начнут переходить к холодному концу, заряжая его положительно, а нагретый конец полупроводника зарядится отрицательно.

Заканчивая рассмотрение полупроводников, делаем следующий вывод.

Добавлением к полупроводнику примесей можно придать ему преобладающую электронную или дырочную проводимость. Исходя из этого, получают следующие типы полупроводников. Полупроводники с электронной проводимостью называют полупроводниками n -типа (негативные), а с дырочной проводимостью - p -типа (позитивные).

Предлагаем вам также посмотреть учебные видео-фильмы о полупроводниках:

List=PL_QCOTUIndSFAbWcR3t0wYp5IORVEHu3I

С открытием полупроводников и изучением их свойств стало возможным создание схем на диодах и транзисторах. Вскоре из-за лучших эксплуатационных характеристик и меньших размеров они вытеснили электронные лампы, затем стало возможным производить интегральные микросхемы на основе полупроводниковых элементов.

Что такое полупроводники

Дать определение полупроводникам – это охарактеризовать их с точки зрения способности к проведению электротока. У данных кристаллических веществ увеличивается электропроводность при возрастании температуры, воздействии света, присутствии различных примесей.

Полупроводники бывают широкозонные и узкозонные, что обуславливает свойства полупроводниковых материалов. От ширины запрещенной зоны, измеряемой в электронвольтах (эВ), зависит электропроводность. Этот параметр можно представить как энергию, которая требуется электрону для проникновения в зону проведения электротока. В среднем для полупроводников она 1 эВ, может быть больше или меньше.

Если правильность кристаллической решетки полупроводников нарушается чужеродным атомом, то такая проводимость будет примесной. Когда полупроводниковые вещества предназначены для создания элементов микросхемы, в них специально добавляют примеси, которые образуют повышенные скопления дырок или электронов:

  • донорные – с большей валентностью, отдают электроны;
  • акцепторные – с меньшей валентностью, забирают электроны, образуя дырки.

Важно! Главный фактор, влияющий на электропроводность проводников, – температура.

Как обеспечивается проводимость

Примерами полупроводников являются кремний, германий. В кристаллах этих веществ атомы имеют ковалентные связи. Когда растет температура, некоторые электроны могут освобождаться. После этого атом, потерявший электрон, становится положительно заряженным ионом. А электрон, не будучи способным перейти к другому атому из-за насыщенности связей, оказывается свободным. Под воздействием электрического поля освободившиеся электроны могут двигаться в направленном потоке.

Ион, потерявший электрон, стремится «отобрать» другой у ближайшего атома. Если у него это получается, то уже этот атом остановится ионом, в свою очередь, пытаясь заместить потерянный электрон. Таким образом, происходит движение «дырок» (положительных зарядов), которое тоже может стать упорядоченным в электрическом поле.

Повышенная температура позволяет электронам энергичнее освобождаться, что приводит к уменьшению сопротивления полупроводника и возрастанию проводимости. Электроны и дырки соотносятся примерно в равных пропорциях в беспримесных кристаллах, такая проводимость называется собственной.

Проводимость p-типа и n-типа

Примесные виды проводимости подразделяются на:

  1. Р-типа. Образуется при добавлении акцепторной примеси. Более низкая валентность примеси вызывает формирование повышенного числа дырок. Для четырехвалентного кремния такой примесью может служить трехвалентный бор;
  2. N-типа. Если к кремнию добавить пятивалентную сурьму, то в полупроводнике возрастет число освободившихся электронов-носителей отрицательного заряда.

Полупроводниковые элементы в основном функционируют на основе особенностей p-n-перехода. Когда два материала с разным типом проводимости привести в соприкосновение, на границе между ними будет происходить взаимопроникновение электронов и дырок в противоположные зоны.

Важно! Процесс взаимообмена полупроводниковых материалов положительными и отрицательными зарядоносителями имеет временные границы – до формирования запирающего слоя.

Носители положительного и отрицательного заряда накапливаются в соединенных частях, с двух сторон от линии соприкосновения. Возникающая разность потенциалов может достигать 0,6 В.

Когда элемент с p-n-переходом попадает в электрическое поле, его проводимость будет зависеть от подключения источника питания (ИП). При «плюсе» на части с р-проводимостью и «минусе» на части с n-проводимостью запирающий слой уничтожится, и через переход пойдет ток. Если ИП подключить противоположным образом, запирающий слой еще больше увеличится и пропустит электроток ничтожно малой величины.

Важно! Р-n-переход обладает односторонней проводимостью.

Использование полупроводников

На основе свойств полупроводников созданы различные приборы, применяющиеся в радиотехнике, электронике и других областях.

Диод

Односторонняя проводимость полупроводниковых диодов определила область их применения – в основном, при выпрямлении переменного тока. Другие виды диодов:

  1. Туннельный. В нем применяются полупроводниковые материалы с таким содержанием примесей, что ширина p-n-перехода резко уменьшается, и становится возможным эффект туннельного пробоя при прямом включении. Используются в ВЧ-устройствах, генераторах, технике для измерений;
  2. Обращенный. Несколько измененный туннельный диод. При прямом подключении напряжение, его открывающее, намного ниже в сравнении с классическими диодами. Это предопределяет использование туннельного диода для преобразования токов малых напряжений;
  3. Варикап. Когда p-n-переход закрыт, его емкость достаточно высока. Варикап используется как конденсатор, емкость которого можно варьировать изменением напряжения. Емкость будет снижаться, если обратное напряжение растет;

  1. Стабилитрон. Подключается параллельно, стабилизирует напряжение на заданном участке;
  2. Импульсный. Из-за коротких переходных процессов применяются для импульсных ВЧ-схем;
  3. Лавинно-пролетный. Используется для генерации колебаний сверхвысокой частоты. В основе – лавинообразное размножение зарядоносителей.

Этот диод состоит не из двух полупроводниковых материалов, вместо этого полупроводник контактирует с металлом. Так как металл не имеет кристаллическую структуру, дырок в нем быть не может. Значит, в месте соприкосновения его с полупроводниковым материалом к проникновению способны только электроны с обеих сторон, совершая работу выхода. Это становится возможным, когда:

  • имеется полупроводник n-типа, и работа выхода его электронов меньше, чем у металла;
  • имеется полупроводник р-типа с работой выхода его электронов большей, чем у металла.

В месте контакта полупроводник потеряет зарядоносители, проводимость его снизится. Создается барьер, который преодолевается прямым напряжением необходимого значения. Обратное напряжение практически запирает диод, работающий как выпрямитель. Диоды Шоттки из-за высокого быстродействия используются в импульсных схемах, в вычислительных устройствах, служат они и качестве силовых диодов для выпрямления тока значительной величины.

Практически ни одна микросхема не обходится без транзисторов, полупроводниковых элементов с двумя p-n-переходами. Транзисторный элемент имеет три выводных контакта:

  • коллектор;
  • база;
  • эммитер.

Если на базу подается маломощный сигнал управления, между коллектором и эммитером пропускается намного больший ток. Когда на базу сигнал не подается, ток не проводится. Таким образом, можно регулировать силу тока. Используется прибор для усиления сигнала и бесконтактной коммутации цепи.

Виды полупроводниковых транзисторов:

  1. Биполярные. Обладают положительными и отрицательными зарядоносителями. Протекающий ток способен проходить в прямом и обратном направлении. Применяются в качестве усилителей;
  2. Полевые. Их выводы называются сток, исток, затвор. Управление производится посредством электрического поля определенной полярности. Сигнал, подаваемый на затвор, может изменять проводимость транзистора. Зарядоносители в полевых приборах могут быть только с одним знаком: положительные либо отрицательные. Мощные полевые транзисторы используются в усилителях звука. Основное их применение – интегральные схемы. Компактные размеры и малое энергопотребление делают возможным устанавливать их в приборах с источниками напряжения малой мощности (часы);
  3. Комбинированные. Могут располагаться совместно с другими транзисторными элементами, резисторами в одной монолитной структуре.

Легирование полупроводников

Легирование – это введение примесных элементов, донорных и акцепторных, в кристаллы полупроводников для регулирования их проводимости. Это происходит в период выращивания кристаллов или путем местного внедрения в отдельных зонах.

Применяемые методы:

  1. Высокотемпературная диффузия. Полупроводниковый кристалл разогревают, и примесные атомы, находящиеся в контакте с его поверхностью, попадают вглубь. В некоторых узлах кристаллической решетки примесные атомы замещают атомы основного вещества;
  2. Ионная имплантация. Происходят ионизация и ускорение примесных атомов, которые бомбардируют монокристалл, создавая местные неоднородности и формируя p-n-переходы;
  3. Лазерное облучение. Преимущество способа в том, что, используя направленное излучение, отдельные участки можно разогреть до любых температурных значений, что облегчает ввод примесей;
  4. Нейтронное легирование. Применяется сравнительно недавно. Заключается в облучении монокристалла тепловыми нейтронами в реакторе, в результате чего происходит мутация атомных ядер. Атомы кремния преобразуются в фосфорные.

Существуют и другие способы легирования: химическое травление, создание тонких пленок путем напыления.

Как получают полупроводники

Главным в получении полупроводников является их очистка от ненужных примесей. Среди множества способов их получения можно выделить два, наиболее часто применяемых:

  1. Зонная плавка. Процесс осуществляется в запаянном кварцевом контейнере, куда подается инертный газ. Расплавляется узкая зона слитка, которая постепенно перемещается. В процессе плавления примеси перераспределяются и рекристаллизируются, выделяя чистую часть;
  2. Метод Чохральского. Заключается в выращивании кристалла из затравки путем постепенного вытягивания из расплавленного состава.

Разновидности полупроводниковых материалов

Различия в составе определяют область применения полупроводников:

  1. К простым – относятся однородные вещества, применяющееся самостоятельно, а также в качестве примесей и составляющих частей сложных материалов. Кремний, селен и германий используются самостоятельно. Бор, сурьма, теллур, мышьяк, сера, иод служат добавками;
  2. Сложные материалы представляют собой химические соединения из двух или нескольких элементов: сульфиды, теллуриды, карбиды;
  3. Оксиды кобальта, меди, европия используются в выпрямительных и фотоэлементах;
  4. Органические полупроводники: индол, акридон, флавантрон, пентацен. Одна из областей их использования – оптическая электроника;
  5. Магнитные полупроводники. Это ферромагнетические материалы, например, сульфид и оксид европия, а также антиферромагнетические – оксид никеля, теллурид европия. Применяются в радиотехнике, оптических устройствах, управляемых магнитным полем.

Сейчас трудно назвать область техники, где не было бы полупроводниковых материалов, используемых в том числе при отсутствии p-n-перехода, например, термосопротивления в температурных датчиках, фотосопротивления в пультах ДУ и другие.

Видео