Меню

Основные понятия теории вероятностей. Основы теории вероятностей и математической статистики

Кровельные материалы

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью , равной, например, ½, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Ниже (в разделе Предельные теоремы) показано, что имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление события А зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.

Предмет теории вероятностей.

Для описания закономерной связи между некоторыми условиями S и событием А, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событие А. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событие А имеет определённую вероятность P (A / S), равную р. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо число N атомов.

Назовем частотой события А в данной серии из n испытаний (то есть из n повторных осуществлений условий S) отношение h = m/n числа m тех испытаний, в которых А наступило, к общему их числу n. Наличие у события А при условиях S определённой вероятности, равной р, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота события А приблизительно равна р.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о которых будет сказано ниже (см. раздел Основные понятия теории вероятностей). Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей.

Наиболее просто определяются основные понятия теории вероятностей как математической дисциплины в рамках так называемой элементарной теории вероятностей. Каждое испытание Т, рассматриваемое в элементарной теорией вероятностей, таково, что оно заканчивается одним и только одним из событий E1, E2,..., ES (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходом Ek связывается положительное число рк - вероятность этого исхода. Числа pk должны при этом в сумме давать единицу. Рассматриваются затем события А, заключающиеся в том, что "наступает или Ei, или Ej,..., или Ek". Исходы Ei, Ej,..., Ek называются благоприятствующими А, и по определению полагают вероятность Р (А) события А, равной сумме вероятностей благоприятствующих ему исходов:

P (A) = pi + ps + … + pk. (1)

Частный случай p1 = p2 =... ps = 1/S приводит к формуле

Р (А) = r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числа r исходов, благоприятствующих А, к числу s всех "равновозможных" исходов. Классическое определение вероятности лишь сводит понятие "вероятности" к понятию "равновозможности", которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i, j), где i - число очков, выпадающее на первой кости, j - на второй. Исходы предполагаются равновероятными. Событию А - "сумма очков равна 4", благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно, Р (A) = 3/36 = 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие В называется объединением событий A 1, A 2,..., Ar,-, если оно имеет вид: "наступает или A1, или А2,..., или Ar".

Событие С называется совмещением событий A1, А.2,..., Ar, если оно имеет вид: "наступает и A1, и A2,..., и Ar". Объединение событий обозначают знаком È, а совмещение - знаком Ç. Таким образом, пишут:

B = A1 È A2 È … È Ar, C = A1 Ç A2 Ç … Ç Ar.

События А и В называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А, и В.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы В. т. - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей. Если события A1, A2,..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - "сумма очков не превосходит 4", есть объединение трёх несовместных событий A2, A3, A4, заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р (В)равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

Условную вероятность события В при условии А определяют формулой


что, как можно показать, находится в полном соответствии со свойствами частот. События A1, A2,..., Ar называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его "безусловной" вероятности

Теорема умножения вероятностей. Вероятность совмещения событий A1, A2,..., Ar равна вероятности события A1,умноженной на вероятность события A2, взятую при условии, что А1 наступило,..., умноженной на вероятность события Ar при условии, что A1, A2,..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A1 Ç A2 Ç … Ç Ar) = P (A1) Ї P (A2) Ї … Ї P (Ar), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2Ї2Ї2Ї2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2Ї0,8Ї0,8Ї0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию "в цель попадают три раза" благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2Ї0,2Ї0,2Ї0,8 =...... =0,8Ї0,2Ї0,2Ї0,2 = 0,0064;

следовательно, искомая вероятность равна

4Ї0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A1, A2,..., An независимы и имеют каждое вероятность р, то вероятность наступления ровно m из них равна

Pn (m) = Cnmpm (1 - p) n-m; (4)

здесь Cnm обозначает число сочетаний из n элементов по m. При больших n вычисления по формуле (4) становятся затруднительными. Пусть в предыдущем примере число выстрелов равно 100, и ставится вопрос об отыскании вероятности х того, что число попаданий лежит в пределах от 8 до 32. Применение формулы (4) и теоремы сложения даёт точное, но практически мало пригодное выражение искомой вероятности


Приближённое значение вероятности х можно найти по теореме Лапласа

причём ошибка не превосходит 0,0009. Найденный результат показывает, что событие 8 £ m £ 32 практически достоверно. Это самый простой, но типичный пример использования предельных теорем теории вероятностей.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности: если события A1, A2,..., Ar попарно несовместны и их объединение есть достоверное событие, то для любого события В его вероятность равна сумме


Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытаний T1, T2,..., Tn-1, Tn, есликаждый исход испытания Т есть совмещение некоторых исходов Ai, Bj,..., Xk, Yl соответствующих испытаний T1, T2,..., Tn-1, Tn. Из тех или иных соображений часто бывают известны вероятности

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Основные понятия теории вероятностей

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными , если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными . Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий .

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны , то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий .

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными , если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Определения и свойства вероятностей

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N , которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А :

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой p , не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А .

Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 3. Бросается игральная кость. Событие B - выпадение чётного числа. Вычислить вероятность этого события.

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:

Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами.

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие . Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие - монета станет на ребро, случайное событие - выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием . В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий .

Основные понятия теории

Вероятность - степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным.

Случайная величина - это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство - понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками: , где

Это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- сигма-алгебра подмножеств , называемых (случайными) событиями;
- вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и - число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей - функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х - произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание - среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской - . В статистике часто используют обозначение .

Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, - измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины - мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть - случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми , если значение одной из них влияет на вероятность значений другой.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел - совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Учение о законах, которым подчиняются т. наз. случайные явления. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

теория вероятностей - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN probability theorytheory of chancesprobability calculation … Справочник технического переводчика

Теория вероятностей - есть часть математики, изучающая зависимости между вероятностями (см. Вероятность и Статистика) различных событий. Перечислим важнейшие теоремы, относящиеся к этой науке. Вероятность появления одного из нескольких несовместных событий равняется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - математич. наука позволяющая по вероятностям одних событий случайных (см.) находить вероятности случайных событий, связанных к. л. образом с первыми. Современная Т.в. основана на аксиоматике (см. Метод аксиоматический) А. Н. Колмогорова. На… … Российская социологическая энциклопедия

Теория вероятностей - раздел математики, в котором по данным вероятностям одних случайных событий находят вероятности других событий, связанных некоторым образом с первыми. Теория вероятностей изучает также случайные величины и случайные процессы. Одна из основных… … Концепции современного естествознания. Словарь основных терминов

теория вероятностей - tikimybių teorija statusas T sritis fizika atitikmenys: angl. probability theory vok. Wahrscheinlichkeitstheorie, f rus. теория вероятностей, f pranc. théorie des probabilités, f … Fizikos terminų žodynas

Теория Вероятностей - … Википедия

Теория вероятностей - математическая дисциплина, изучающая закономерности случайных явлений … Начала современного естествознания

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - (probability theory) см. Вероятность … Большой толковый социологический словарь

Теория вероятностей и её применения - («Теория вероятностей и её применения»,) научный журнал Отделения математики АН СССР. Публикует оригинальные статьи и краткие сообщения по теории вероятностей, общим вопросам математической статистики и их применениям в естествознании и… … Большая советская энциклопедия

Книги

  • Теория вероятностей. , Вентцель Е.С.. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного втузовского курса и интересующихся техническими приложениямитеории вероятностей, в… Купить за 1993 грн (только Украина)
  • Теория вероятностей. , Вентцель Е.С.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного…