Меню

Метод предельных состояний сопромат. Расчета по предельным состояниям

Виды крыш

Физический смысл предельных состояний.

И работе по предельным состояниям

Тема 4.2.1. Понятие о предельных состояниях строительных конструкций

1. Предельными называются состояния здания, соору­жения, основания или конструкций, при ко­торых они:

А) перестают удовлетворять эксплуатацион­ным требованиям

Б) а также требованиям, заданным при их воз­ведении.

2. Группы предельных состояний конструкций (зданий):
а) первая группа - по потере несущей способности или непригод­ности к эксплуатации. Состояния этой группы считаются предельными, если в К насту­пило опасное напряженно-деформированное состояние или она разрушилась;

Б) вторая группа - по непригодности к нормальной эксплуата­ции. Нормальная - это эксплуатация здания (К) в соответствии с нормами: технологичес­кими или бытовыми условиями.

Пример. Конструкция не потеряла несущей способности, т.е. удовлетворяет требованиям первой группы п.с., но ее деформации (прогибы или трещины) нарушают технологический процесс или нормальные ус­ловия нахождения людей в помещении.

Примеры предельных состояний 1 й и 2 й группы.

1. К предельным состояниям первой группы относятся:
а) общая потеря устойчивости формы (рис. 2.1, а, б – с.26);
б) потеря устойчивости положения (рис. 2.1, в, г);
в) хрупкое, вязкое или иного характера разрушение (рис. 2.1, д);
г) разрушение под совместным воздействием силовых факторов и внешней среды и др.

2. К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию К (З) или снижающие их долговечность от недопу­стимых перемещений (прогибов, осадок, углов поворота), коле­баний и трещин.

Пример 1. Прочная надёжная подкрановая балка прогнулась больше норматива. Мостовой кран с грузом «выезжает из ямы» от прогиба балки, что создает лишние нагрузки на узлы и ухудшает условия нормальной эксплуатации.

Пример 2. При прогибе дере­вянного оштукатуренного потолка > чем на 1/300 длины пролета отпадает штукатурка. Прочность балки не исчерпывается, но нарушаются быто­вые условия и возникает опасность здоровью людей.

Пример 3. Чрезмерное раскрытие трещин, которые допустимы в ЖБ и КК, но ограничиваются нормами.

1. Цель метода расчета СК по предельным со­стояниям: не допустить ни одно­го из предельных состояний в К (З) при их эксплуатации в течение срока служ­бы и при возведении.

2. Суть расчёта по предельным состояниям - величины усилий, напряжений, деформаций, раскрытия трещин или других воздействий не должны превышали предельных значений по нормам проектирования.



А) т.е. предельное состояние не наступит, если перечисленные факторы не превышают значений, установленных нормами.

Б) сложность расчета в опре­делении напряжений, деформаций и т.д., в конструкциях от нагрузок. Сравнить их с предель­ными не сложно.

по предельным состояниям 1 й группы

1. Расчет по предельным состояниям первой группы - расчет по несущей способности (непригодности к эксплуа­тации).

2. Цель расчета - предот­вратить наступление любого предельного состояния первой груп­пы, т.е. обеспечить несущую способность как К, и всего З в целом.

3. Несущая способность конструкции обеспечена , если

N ≤ Ф (2.1)

N - расчетные, т.е. наибольшие возможные усилия, могущие возникнуть в сечении элемента (для сжа­тых и растянутых элементов - это продольная сила, для изгиба­емых - изгибающий момент и т.д.).

Ф - наименьшая возможная несущая способность сечения эле­мента, подвергающегося сжатию, растяжению или изгибу, зависит от прочности материала К, геомет­рии (формы и размеров) сечения и выражена:

Ф ={R; А } (2.2)

R - расчетное сопротивление материала - од­на из основных прочностных характеристик материала

А - геометрический фактор (площадь поперечного сечения - при растяжении и сжатии, момент сопротивления - при изгибе и т.д.).

4. Для некоторых конструкций несущая способность обеспечена, если

σ ≤ R (2.3)

где σ - нормальные напряжения в сечении К (иногда касательные, главные и др.).

Структура и содержание основных расчетных формул при расчете

по предельным состояниям 2 й группы (п.с )

1. Цель расчета - не допустить предельных со­стояний второй группы, т.е. обеспечить нормальную эксплуатацию СК или здания. П.С. второй группы не насту­пят при условии:

f - деформация конструкции (перемещение, угол поворота сечения и т. д.).

Прим. Деформации: при изгибе – прогиб СК, стержни - укорочение или удлинение, основания - величина осадки

2. К п.с. 2 группы - об­разование чрезмерных трещин. Они допус­тимы для ЖБК и КК. Ширина их раскры­тия, как и прогибы, ограничивается нормами.

Предельным называется такое состояние, при котором сооружение (конструкция) перестает удовлетворять эксплуатационным требованиям, т.е. теряет способность сопротивляться внешним воздействиям и нагрузкам, получает недопустимые перемещения или ширину раскрытия трещин и т.д.

По степени опасности нормы устанавливают две группы предельных состояний: первая группа - по несущей способности;

вторая группа - по к нормальной эксплуатации.

К предельным состояниям первой группы относят хрупкое, вязкое, усталостное или иное разрушение, а также потерю устойчивости формы, потерю устойчивости положения, разрушение от совместного действия силовых факторов и неблагоприятных условий окружающей среды.

Предельные состояния второй группы характеризуются образованием и чрезмерным раскрытием трещин, чрезмерными прогибами, углами поворота, амплитудами колебаний.

Расчет по первой группе предельных состояний является основным и обязательным во всех случаях.

Расчет по второй группе предельных состояний производится для тех конструкций, которые теряют свои эксплуатационные качества вследствие наступления вышеперечисленных причин.

Задачей расчета по предельным состояниям является обеспечение требуемой гарантии того, что за время эксплуатации сооружения или конструкции не наступит ни одно из предельных состояний.

Переход конструкции в то или иное предельное состояние зависит от многих факторов, наиболее важными из которых являются:

1. внешние нагрузки и воздействия;

2. механические характеристики бетона и арматуры;

3. условия работы материалов и конструкции.

Каждый фактор характеризуется изменчивостью в процессе эксплуатации, причем изменчивость каждого фактора в отдельности не зависит от остальных и является процессом случайным. Так нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов - от заданной вероятности снижения средних значений.

В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и прочностных характеристик материалов, а также различные неблагоприятные или благоприятные условия работы.

2.2.3. Нагрузки

Нагрузки делятся на постоянные и временные. Временные, в зависимости от продолжительности действия, подразделяются на длительные, кратковременные и особые.

К постоянным нагрузкам относятся вес несущих и ограждающих конструкций, вес и давление грунта, усилие предварительного обжатия.

К длительным временным нагрузкам относят вес стационарного оборудования на перекрытиях; давление газов, жидкостей, сыпучих тел в емкостях; нагрузки в складских помещениях; длительные температурные технологические воздействия, часть полезной нагрузки жилых и общественных зданий, от 30 до 60% веса снега, часть нагрузок мостовых кранов и т.д.

Кратковременными нагрузками или временными нагрузками непродолжительного действия считаются: вес людей, материалов в зонах обслуживания и ремонта; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже; нагрузки от подвесных и мостовых кранов; снеговые и ветровые нагрузки.

Особые нагрузки возникают при сейсмических, взрывных и аварийных воздействиях.

Различают две группы нагрузок - нормативные и расчетные.

Нормативными называют такие нагрузки, которые не могут быть превышены при нормальной эксплуатации.

Нормативные нагрузки устанавливаются на основе опыта проектирования, строительства и эксплуатации зданий и сооружений.

Принимаются они по нормам с учетом заданной вероятности превышения средних значений. Величины постоянных нагрузок определяют по проектным значениям геометрических параметров и средним величинам плотности материалов.

Нормативные временные нагрузки устанавливаются по наибольшим значениям, например, ветровые и снеговые нагрузки -по средним из ежегодных значений для неблагоприятного периода их действия.

Расчетные нагрузки.

Изменчивость нагрузок, в результате которой возникает вероятность превышения их величин, а в отдельных случаях и снижения, по сравнению с нормативными, оценивается введением коэффициента надежности .

Расчетные нагрузки определяются умножением нормативной нагрузки на коэффициент надежности, т.е.

(2.38)

где q

При расчете конструкций по первой группе предельных состояний принимается, как правило, больше единицы и только в том случае, когда уменьшение нагрузки ухудшает условия работы конструкции, принимают < 1 .

Расчет конструкции по второй группе предельных состояний производится на расчетные нагрузки с коэффициентом =1, учитывая меньшую опасность их наступления.

Сочетание нагрузок

На сооружение действует одновременно несколько нагрузок. Одновременное достижение их максимальных значений маловероятно. Поэтому расчет производится на различные неблагоприятные сочетания их, с введением коэффициента сочетаний.

Различают два вида сочетаний: основные сочетания, состоящие из постоянных, длительных и кратковременных нагрузок; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок.

Если в основное сочетание входит только одна кратковременная нагрузка, коэффициент сочетаний принимается равным единице, при учете двух и более кратковременных нагрузок последние умножаются на 0,9.

При проектировании следует учитывать степень ответственности и капитальности зданий и сооружений.

Учёт осуществляется введением коэффициента надёжности по назначению, который принимается в зависимости от класса сооружений.Для сооружений 1 класса (объекты уникальные и монументальные)
, дляобъектов II класса (многоэтажные жилые, общественные, производственные)
. Для сооружений III класса

Тема 3. Расчет металлических конструкций по методу предельных

состояний

Понятие о предельных состояниях конструкций; расчетные ситуации. Расчет конструкций по первой группе предельных состояний. Расчет конструкций по второй группе состояний. Нормативные и расчетные сопротивления

Все строительные конструкции, в том числе и металлические, рассчитываются в настоящее время по методу предельных состояний. В основе метода лежит поня- тие о предельных состояниях конструкций. Под предельными подразумеваются такие состояния, при которых конструкции перестают удовлетворять предъявляе- мым к ним в процессе эксплуатации или при возведении требованиям, заданным в соответствии с назначением и ответственностью сооружений.

В металлических конструкциях различают две группы предельных состояний:

Предельные состояния первой группы характеризуются потерей несущей способности и полной непригодностью конструкций к эксплуатации. К предельным состояниям первой группы относятся:

Разрушение любого характера (вязкое, хрупкое, усталостное);

Общая потеря устойчивости формы;

Потеря устойчивости положения;

Переход конструкции в изменяемую систему;

Качественное изменение конфигурации;

Развитие пластических деформаций, чрезмерных сдвигов в соединениях

Выход за границы первой группы предельных состояний означает полную утрату работоспособности конструкции.

Предельные состояния второй группы характеризуются непригодностью к нормальной эксплуатации, вследствие появления недопустимых перемещений (прогибов, углов поворота, колебаний и т. д.), а также недопустимого раскрытия трещин (для железобетонных конструкций).

В соответствии с действующими нормами при расчете строительных конструкций реализуются две расчетные ситуации: аварийная и установившаяся.

Расчет по первой группе предельных состояний направлен на предотв- ращение аварийной расчетной ситуации, которая может возникнуть не более одного раза в течение всего срока эксплуатации конструкции.

Расчет по второй группе предельных состояний характеризует установив- шуюся расчетную ситуацию, соответствующую нормативным условиям эксплуатации.

Расчет конструкции, направленной на предотвращение предельных состояний первой группы (аварийной расчетной ситуации) выражается неравенством:

N ≤ Ф (3.1)

где N – усилие в рассматриваемом элементе (продольная сила, изгибающий момент, поперечная сила)

Ф – несущая способность элемента

При аварийной расчетной ситуации усилие N зависит от предельной расчетной нагрузки F m , определяемой по формуле:

F m = F 0 ∙ g fm

где F 0

g fm - коэффициент надежности по предельному значению нагрузки, учитывающий возможное отклонение нагрузки в неблагоприятную сторону. Характеристическое значение нагрузки F 0 и коэффициент g fm определяют по значениям ДБН .

При подсчете нагрузок, как правило, учитывают коэффициент надежности по назначению сооружению g n , зависящий от степени ответственности сооружения

F m = F 0 ∙ g fm ∙ g n

Значение коэффициента g n приведены в табл. 3.1

Таблица 3.1 Коэффициенты надежности по назначению сооружения g n

Класс объекта Степень ответствен­ности Примеры объектов g n
I Особо важное народно хо­зяйственное и (или) соци­альное значение Главные корпуса ТЭС, центральные узлы доменных печей, дымовые тру­бы высотой более 200 м, телебашни, крытые спортивные сооружения, те­атры, кинотеатры, детские сады, больницы, музеи.
II Важное народно-хозяйственное и (или) социальное значение Объекты, ни вошедшие в классы I и III 0,95
III Ограниченное народнохо­зяйственное и социальное значение Склады без процессов сортировки и упаковки для храпения сельско­хозяйственных продуктов, удобре­ний, химикатов, торфа и др., теп­лицы, одноэтажные жилые здания, опоры связи и освещения, ограды, временные здания и сооружения и т.д. 0,9

Правую часть неравенства (3.1) можно представить в виде

Ф = SR y g c (3.2)

где R y - расчетное сопротивление стали, установленное по пределу текучести, S - геометрическая характеристика сечения (при растяжении или сжатии – площадь сечения А , при изгибе – момент сопротивления W и т. д.),

g c - коэффициент условия работы конструкции, значения которого

установлены СНиП и приведены в табл. А 1 приложения А.

Подставляя в формулу (3.1) значение (3.2), получим

N ≤ SR y g c

Для растянутых элементов при S = A

N ≤ AR y g c

Разделив левую и правую части неравенства на А, получим условие прочности растянутого элемента

Для изгибаемых элементов при S=W

M ≤ WR y g c

Условие прочности изгибаемого элемента

Формула для проверки устойчивости сжатого элемента

При расчете конструкций, работающих при повторных нагружениях (например, при расчете подкрановых балок) для определения усилий используют циклическую расчетную нагрузку, значение которой определяют по формуле

F c = F 0 g fc g n

где F 0 - характеристическое значение крановой нагрузки;

g fc - коэффициент надежности по циклическому расчетному значению крановой нагрузки

Расчет стальных конструкций, направленный на предотвращение предельных состояний второй группы выражается неравенством

d ≤ [d ], (3.3)

где d - деформации или перемещения конструкций, возникающие от эксплуатационного расчетного значения нагрузок; для определения можно использовать методы строительной механики (например, метод Мора, начальных параметров);

[d ] - предельные деформации или перемещения, установленные нормами .

Эксплуатационное расчетное значение нагрузки характеризует условия нормальной эксплуатации и определяется по формуле

F l = F 0 g f е g n

где F 0 - характеристическое значение нагрузки,

g f е - коэффициент надежности по эксплуатационной расчетной нагрузке.

Для изгибаемых элементов (балок, ферм) нормируется относительный прогиб f/l , где f - абсолютный прогиб, l - пролет балки.

Формула для проверки жесткости балки на двух опорах имеет вид

(3.4)

где - предельный относительный прогиб;

для главных балок = 1/400,

для балок настила = 1/250,

q e - эксплуатационное расчетное значение нагрузки, определяемое по формуле

q e = q 0 g fe g n

Характеристическое значение нагрузки q e и коэффициент надежности по эксплуатационной расчетной нагрузке g fe принимаются по указаниям норм .

Ко второй группе предельных состояний относится также расчет на трещиностойкость в железобетонных конструкциях.

Для некоторых материалов, например, пластмасс характерна ползучесть – нестабильность деформаций во времени. В этом случае проверку жесткости конструкций следует выполнять с учетом ползучести. В таких расчетах используют квазипостоянную расчетную нагрузку, значение которой определяют по формуле:

F p = F 0 g fp g n

где F 0 - характеристическое значение квазипостоянной нагрузки;

g fp - коэффициент надежности для квазипостоянной расчетной нагрузки.

В металлических конструкциях различают два вида расчетного сопротивления R :

- R y - расчетное сопротивление, установленное по пределу текучести и используемое в расчетах, предполагающих упругую работу материала;

- R u - расчетное сопротивление, установленное по пределу прочности и используемое в расчетах конструкций, где допустимы значительные пластичные деформации.

Расчетное сопротивление R y и R u определяются по формулам:

R y = R yn /g m и R u = R un /g m

в которых R yn и R un - нормативные сопротивления, соответственно равные

R yn = s m

R un = s в

Где s m - предел текучести,

s в - предел прочности (временного сопротивления) материала;

g m - коэффициент надежности по материалу, учитывающий изменчивость свойств материала и выборочный характер испытаний образцов по определе- нию s m и s в , а также масштабный фактор – механические характеристики определяются на малых образцах при кратковременном одноосном растяже- нии, в то время как металл работает длительное время в большеразмерных конструкциях.

Значение нормативных сопротивлений R yn = s m и R un = s в , а также значения коэффициента g m устанавливают статистически. Нормативные сопротивления имеют статистическую обеспеченность не менее 0,95, т.е. в 95 случаях из 100 s m и s в будут не менее значений, указанных в сертификате. Коэффициент надежности по материалу g m установлен на основании анализа кривых распределения результатов испытаний стали. Значения этого коэффициента в зависимости от ГОСТ или ТУ на сталь дает табл. 2 СНиП . Значения этого коэффициента изменяются от 1,025 до 1,15.

Нормативные R yn и R un и расчетные R y и R u сопротивления для разных марок стали в зависимости от вида проката (лист или фасон) м его толщины представлены в табл. 51 СНиП . В расчетах также используют расчетное сопротивление на сдвиг (срез) R s =0,58R y , на смятие R p = R u и др.

Нормативные и расчетные сопротивления для некоторых наиболее применяемых марок сталей приведены в табл. 3.2 .

Таблица 3.2. Нормативные и расчетные сопротивления стали по

ГОСТ 27772-88.

Сталь Таблица проката Нормативные сопротивления, МПа, проката Расчетные сопротивления, МПа, проката
листового фасонного листового фасонного
R yn R un R yn R un R yn R un R yn R un
С235 2-20 2-40
С245 2-20 2-30 - - - -
С255 4-10 10-20 20-40
С275 2-10 10-20
С285 4-10 10-20
С345 2-10 20-20 20-40
С345 4-10
С375 2-10 10-20 20-40

Таким образом, в методе предельных состояний все исходные величины, случайные по своей природе, представляются в нормах некоторыми нормативными значениями, а влияние их изменчивости на конструкцию учитывается соответствующими коэффициентами надежности. Каждый из введенных коэффициентов учитывает изменчивость лишь одной исходной величины (нагрузки, условий работы, свойств материалов, степени ответственности сооружения). Эти коэффициенты часто называют частными, а сам метод расчета по предельным состояниям за рубежом называют методом частных коэффициентов.

Литература: , с. 50-52; с. 55-58.

Тесты для самоконтроля

I. Потеря устойчивости относится к предельным состояниям:

1. I группы;

2. II группы;

3. III группы.

II. Коэффициент γ m учитывает:

1. условия работы конструкции;

3. изменчивость нагрузок.

III. Расчетное сопротивление Ry определяют по формуле:

1. Ry = Ryn / γ m ;

2. Ry = Run / γ n ;

3. Ry = Run / γ c.

IV. Непригодность конструкций к эксплуатации характеризует предель-

ное состояние:

1. I группы;

2. II группы;

3. III группы.

V. Коэффициент γ n учитывает:

1. Степень ответственности сооружения;

2. изменчивость свойств материала;

3. изменчивость нагрузок.

VI. Расчетное сопротивление Ry устанавливают:

1. по пределу упругости;

2. по пределу текучести;

3. по пределу прочности.

VII. Коэффициент γ fm применяют для определения расчетной нагрузки:

1. предельной;

2. эксплуатационной

3. циклической.

VIII. Расчет на устойчивость выполняют с учетом расчетной нагрузки:

1. предельной;

2. эксплуатационной

3.циклической.

IХ. Хрупкое разрушение относится к предельным состояниям:

1. I группы;

2. II группы;

3. III группы.

Х. Для одноэтажных жилых зданий коэффициент γ n принимают

1. γ n = 1;

2. γ n = 0,95;

3. γ n = 0,9;

ХI. Для особо ответственных зданий коэффициент γ n принимают

1.γ n = 1;

2.γ n = 0,95;

3.γ n = 0,9;

ХII. Ко второй группе предельных состояний относится расчет:

1. на прочность;

2. на жесткость;

3. на устойчивость.

3.2 Классификация нагрузок. Нагрузка от веса конструкции и грунта. Нагрузки на перекрытия и покрытия зданий. Снеговая нагрузка. Ветровая нагрузка. Сочетания нагрузок.

По характеру воздействия нагрузки делятся на: механические и немехани- ческой природы.

Механические нагрузки (силы, приложенные к конструкции, или вынужденные деформации) учитываются в расчетах непосредственно.

Воздействия немеханической природы , например, влияние агрессивной среды, как правило, в расчете учитывается косвенно.

В зависимости от причин возникновения нагрузки и воздействия подразделяют-

ся на основные и эпизодические.

В зависимости от изменчивости во времени нагрузки и воздействия подразде-

ляются на постоянные и переменные (временные). Переменные (временные)

нагрузки делятся на: длительные; кратковременные; эпизодические.

Основой для назначения нагрузок являются их характеристические значения.

Расчетные значения нагрузок определяются умножением характеристических

значений на коэффициент надежности по нагрузке, зависящий от вида нагруже-

ния. В зависимости от характера нагрузок и целей расчета используют четыре вида расчетных значений - предельное; эксплуатационное; циклическое; квазипостоянное.

Их значения определяют соответственно по формулам:

F m = F 0 · γ f m · γ n , (3.5)

F e = F 0 · γ f e · γ n , (3.6)

F c = F 0 · γ f c · γ n , (3.7)

F p = F 0 · γ f p · γ n , (3.8)

где F 0 – характеристическое значение нагрузки;

γ f m , γ f e , γ f c , γ f p - коэффициенты надежности по нагрузке;

γ n – коэффициент надежности по назначению сооружения, учитывающий

степень его ответственности (см. табл. 3.1).

Вес несущих и ограждающих конструкций здания;

Вес и давление грунтов (насыпей, засыпок);

Усилие от предварительного напряжения в конструкциях.

Вес временных перегородок, подливок, подбетонок под оборудование;

Вес стационарного оборудования и его заполнения жидкостями, сыпучими

Давление газов, жидкостей и сыпучих тел в ёмкостях и трубопроводах;

Нагрузки на перекрытия от складируемых материалов в складах, архивах и т.д.;

Температурные технологические воздействие от оборудования;

Вес слоя воды в водонаполненных покрытиях;

Вес отложения производственной пыли;

Воздействия, обусловленные деформациями основания без изменения структу-

ры грунта;

Воздействии, обусловленные изменением влажности, агрессивности среды,

усадкой и ползучестью материалов.

Снеговые нагрузки;

Ветровые нагрузки;

Гололедные нагрузки;

Нагрузки от подвижного подъемно-транспортного оборудования, включая мос-

товые и подвесные краны;

Температурные климатические воздействия;

Нагрузки от людей, животных, оборудования на перекрытия жилых, обществен-

ных и сельскохозяйственных зданий;

Вес людей, ремонтных материалов в зоне обслуживания оборудования;

Нагрузки от оборудования, возникающие в пускоостановочном, переходном и

испытательных режимах.

Сейсмические воздействия;

Взрывные воздействия;

Нагрузки аварийные, вызванные нарушениями технологического процесса, по-

ломкой оборудования;

Нагрузки, обусловленные деформациями основания с коренным изменением

структуры грунта (при замачивании просадочных грунтов) или оседанием его

в районах горных выработок и в карстовых районах.

Характеристические и расчетные значения эпизодических нагрузок определяются

специальными нормативными документами.

Характеристическое значение веса конструкций заводского изготовления следует определять на основании каталогов, стандартов, рабочих чертежей или

паспортных данных заводов-изготовителей. Для других конструкций (монолит-

ный железобетон, кирпичная кладка, грунт) значение веса определяют по проект-

ным размерам и плотности материалов. Для железобетона плотность принимается

ρ = 2500 кг/м 3 , для стали ρ = 7850 кг/м 3 , для кирпичной кладки ρ = 1800 кг/м 3 .

Постоянная нагрузка может иметь три расчетных значения:

Предельное, определяемое по формуле:

F m = F 0 · γ f m · γ n ,

Эксплуатационное, определяемое по формуле:

F e = F 0 · γ f e · γ n ,

Квазипостоянное, определяемое по формуле:

F p = F 0 · γ f p · γ n ,

В приведенных формулах γ n – коэффициент надежности по назначению

сооружения (см. табл. (3.1). Значения коэффициента надежности по предельному

значению нагрузки γ f m принимается по табл.3.3. Значение коэффициент надеж- ности по эксплуатационному значению нагрузки γ f e принимается равным 1,

т.е γ f e = 1 ; равным 1 принимается также значение коэффициента γ f p = 1, исполь-

зуемого для определения квазипостоянного расчетного значения нагрузки, приме-

няемого в расчетах на ползучесть.

Таблица 3.3 Значение коэффициента γ f m

Значения в скобках следует использовать при проверке устойчивости конструкции на опрокидывание и в иных случаях, когда уменьшение веса конструкций и грунтов может ухудшить условия работы конструкции.

В таблице 3.4 приведены характеристические значения равномерно распределен-

ных нагрузок на перекрытия жилых и общественных зданий.


Продолжение таблицы 3.4.

Предельное эксплуатационное значение нагрузок на перекрытия определяют

по формулам:

q m = q 0 · γ fm · γ n ,

q e = q 0 · γ fe · γ n .

Коэффициенты надежности для предельной нагрузки γ fm = 1,3 при q 0 < 2кН/м 2 ; при q 0 ≥ 2кН/м 2 γ fm = 1,2 . Коэффициент надежности для эксплуатационной нагрузки γ fe = 1.

является переменной, для которой установлены три расчетных значения: предельное, эксплуатационное и квазипостоянное. Для расчета без учета реологических свойств материала используют предельное и эксплуатационное расчетные значения снеговой нагрузки.

Предельное расчетное значение снеговой нагрузки на горизонтальную проек-

цию покрытия определяется по формуле:

S m = S 0 · C · γ fm , (3.9)

где S 0 – характеристическое значение снеговой нагрузки, равное весу снегового покрова на 1м 2 поверхности земли. Значения S 0 определяются в зависимости от снегового района по карте районирования или по приложению Е . На терри- тории Украины выделено шесть снеговых районов; максимальное значение характеристической нагрузки для каждого из снеговых районов приведены в таблице 3.5. Запорожье расположено в III снеговом районе.

Таблица 3.5.- Максимальные значения характеристической снеговой нагрузки

Снеговой район I II III IV V VI
S 0 , Па

Более точные значения характеристической снеговой нагрузки для некоторых

городов Украины приведены в таблице А.3 приложения А.

Коэффициент с в формуле (3.9) определяется по формуле:

С = μ · Се · Саlt ,

где: Се – коэффициент учитывающий режим эксплуатации кровли;

Саlt

μ - коэффициент перехода от веса снегового покрова на поверхности земли

к снеговой нагрузке на покрытие, зависящий от формы кровли.

Для зданий с односкатными и двухскатными покрытиями (рис. 3.1) значения

коэффициента μ принимают равным:

μ = 1 при α ≤ 25 0

μ = 0 при α > 60 0 ,

где α – угол наклона кровли. Варианты 2 и 3 следует учитывать для зданий с

двухскатными профилями (профиль б) , при этом вариант 2 – 20 0 ≤ α ≤ 30 0 ,

а вариант 3 – 10 0 ≤ α ≤ 30 0 только при наличии ходовых мостиков или аэрацион-

ных устройств по коньку покрытия.

Значение коэффициента μ для зданий

с покрытиями других очертаний мож-

но найти в приложении Ж .

Коэффициент Се в формуле (3.9), учи-

тывающий влияние режима эксплуата-

ции на накопление снега на кровле

(очистку, таяние и др.), устанавливается

заданием на проектирование. Для неутеп-

ленных покрытий цехов с повышенным

тепловыделением при уклонах кровли свыше 3% и обеспечении надлежащего

отвода талой воды следует принимать

Се =0,8. При отсутствии данных о режи-

ме эксплуатации кровли допускается

принимать Се =1 . Коэффициент Саlt – учитывает географическую высоту Н (км) размещения строительного объекта над уровнем моря. При Н < 0,5км, Саlt = 1 , при Н ≥ 0,5км значение Саlt можно определить по формуле:

Саlt = 1,4Н + 0,3

Коэффициент γ fm по предельному расчетному значению снеговой нагрузки в

формуле (3.9) определяется в зависимости от заданного среднего периода повто-

ряемости Т по таблице 3.6

Таблица 3.6. Коэффициент γ fm по предельному расчетному значению

снеговой нагрузки

Промежуточные значения γ fm

Для объектов массового строительства допускается период повторяемости аварийной ситуации Т Т е f (табл. А.3, прилож. А).

Эксплуатационное расчетное значение снеговой нагрузки определяется по формуле:

S e = S o · C · γ fe , (3.10)

где S o и C – то же что и в формуле (3.9);

γ fe – коэффициент надежности по эксплуатационному значению снеговой

нагрузки, определяемый по таблице 3.7 в зависимости от доли времени

η на протяжении которой могут нарушаться условия второго предель-

ного состояния; промежуточное значение γ fe следует определять линей-

ной интерполяцией.

Таблица 3.7. Коэффициент γ fe по эксплуатационному значению снеговой нагрузки

η 0,002 0,005 0,01 0,02 0,03 0,04 0,05 0,1
γ fe 0,88 0,74 0,62 0,49 0,4 0,34 0,28 0,1

Значение η принимается по нормам проектирования конструкций или устанав-

ливается заданием на проектирование в зависимости от их назначения, ответствен-

ности и следствий выхода за предельное состояние. Для объектов массового строи-

тельства допускается принимать η = 0,02 (2% времени от срока службы сооруже-

является переменной, для которой установлены два расчет-

ных значения: предельное и эксплуатационное.

Предельное расчетное значение ветровой нагрузки определяется по формуле:

W m = W 0 · C γ fm , (3.11)

где С – коэффициент определяемый по формуле (3.12);

γ fm – коэффициент надежности по предельному значению ветровой нагрузки;

W 0 - характеристическое значение ветровой нагрузки, равное средней (стати-

ческой) составляющей давления ветра на высоте 10м над поверхностью

земли. Значение W 0 определяется в зависимости от ветрового района по

карте районирования или по приложению Е .

На территории Украины выделено пять ветровых районов; максимальные характе-

ристические значения нагрузки для каждого из ветровых районов приведены в таб-

лице 3.8. Запорожье расположено в III ветровом районе.

Таблица 3.8. Максимальные характеристические значения ветровой нагрузки

Ветровой район I II III IV V
W 0 ,

Более точные значения характеристической ветровой нагрузки для некоторых городов Украины приведены в таблице А.2 прилож. А.

Коэффициент С в формуле (3.11) определяется по формуле:

С = Саер · Сh · Calt ·Crel · Cdir · Cd (3.12)

где Саер – аэродинамический коэффициент; Сh - коэффициент, учитывающий высоту сооружения; Calt – коэффициент географической высоты; Crel – коэффи -циент рельефа; Cdir – коэффициент направления; Cd – коэффициент динамич- ности.

Современные нормы предусматривают несколько аэродинамических коэффициентов:

Внешнего воздействия Се ;

Трения С f ;

Внутреннего воздействия C i ;

Лобового сопротивления С х ;

Поперечной силы С у .

Значения аэродинамических коэффициентов определяются по приложению И

в зависимости от формы сооружения или конструктивного элемента. При расчете рам каркасов зданий обычно используют аэродинамический коэффициент внешнего воздействия Се . На рисунке 3.2 представлены сооружения простейшей формы, схемы ветрового давления на поверхности и аэродинамические коэффициенты внешнего воздействия к ним.

а – отдельно стоящие плоские сплошные конструкции; б – здания с двускатными покрытиями.

Рис.3.2. Схемы ветровых нагрузок

Для зданий с двускатными покрытиями (рис.3.2,б) аэродинамический коэффициент

активного давления Се = + 0,8; значения коэффициентов Се1 и Се2 в зависимости от

размеров здания приведены в табл. 3.9 , коэффициент Се3 – в табл.3.10 .

Таблица 3.9. Значения коэффициентов Се1 и Се2

Коэффициент α, град. Значения Се 1 ,Се2 при h / l , равном
0,5 ≥ 2
Се1 - 0,6 - 0,7 - 0,8
+ 0,2 - 0,4 - 0,7 - 0,8
+ 0,4 +0,3 - 0,2 - 0,4
+ 0,8 +0,8 +0,8 +0,8
Се2 ≤ 60 - 0,4 - 0,4 - 0,5 - 0,8

Таблица 3.10. Значения коэффициентов Се3

b/ l Значения Се3 при h / l , равном
≤ 0,5 ≥ 2
≤ 1 - 0,4 - 0,5 - 0,6
≥ 2 - 0,5 - 0,6 - 0,6

Знак «плюс» у коэффициентов соответствует направлению давления ветра на поверхность, знак «минус» - от поверхности. Промежуточные значения коэффи-циентов следует определять линейной интерполяцией. Максимальное значение коэффициента для откоса Се3 = 0,6.

Коэффициент высоты сооружения Сh учитывает увеличение ветровой нагрузки по высоте здания и зависит от типа окружающей местности и определяется по таблице 3.11.

Таблица 3.11. Значения коэффициентов Сh

Z (м) Сh для типа местности
I II III IV
≤ 5 0,9 0,7 0,40 0,20
1,20 0,90 0,60 0,40
1,35 1,15 0,85 0,65
1,60 1,45 1,15 1,00
1,75 1,65 1,35 1,10
1,90 1,75 1,50 1,20
1,95 1,85 1,60 1,25
2,15 2,10 1,85 1,35
2,3 2,20 2,05 1,45

Типы местности, окружающей сооружение, определяются для каждого расчет-

ного направления ветра в отдельности:

I – открытые поверхности морей, озер, а также равнины без препятствий, подвер-

гающиеся действию ветра на участке длиной не менее 3 км;

II – сельская местность с оградами (заборами), небольшими сооружениями, дома-

ми и деревьями;

III – пригородные и промышленные зоны, протяженные лесные массивы;

IV – городские территории, на которых по крайней мере 15% поверхности заняты

зданиями, имеющими среднюю высоту более 15 м.

Сооружение считается расположенным на местности данного типа для опреде-

ленного расчетного направления ветра, если в рассматриваемом направлении такая

местность имеется на расстоянии 30Z при полной высоте сооружения Z < 60м или

2 км при Z > 60м (Z – высота здания).

Коэффициент географической высоты Calt учитывает высоту Н (км) размещения

строительного объекта над уровнем моря и определяется по формуле:

Calt = 2Н, при Н > 0,5 км,

Calt = 1 , при Н ≤ 0,5 км.

Коэффициент рельефа Crel учитывает микрорельеф местности вблизи площад-

ки, на которой расположен строительный объект, и принимается равным единице

за исключением случаев, когда объект строительства расположен на холме или на

Коэффициент направления Cdir учитывает неравномерность ветровой нагрузки

по направлению ветра и, как правило, принимается равным единице. Cdir ≠ 1 при-

нимается при специальном обосновании только для открытой равнинной местнос-

Коэффициент динамичности Cd учитывает, влияние пульсационной составляю-

щей ветровой нагрузки и пространственную корреляцию ветрового давления на

сооружение. Для сооружений, не требующих расчета динамики ветра Cd = 1.

Коэффициент надежности по предельному расчетному значению ветровой наг-

рузки γ fm определяется в зависимости от заданного среднего периода повторяе-

мости Т по таблице 3.12.

Таблица 3.12. Коэффициент надежности по предельному расчетному значению ветровой нагрузки γ fm

Промежуточные значения γ fm следует определять линейной интерполяцией.

Для объектов массового строительства допускается средний период повторяемос - ти Т принимать равным установленному сроку эксплуатации конструкции Т ef

(по табл.А.3. прилож.А).

Эксплуатационное расчетное значение ветровой нагрузки определяется по формуле:

We = Wo · C γfe , (3.13)

где Wo и C – то же, что и в формуле (3.12);

γfe – коэффициент надежности по эксплуатационному расчетному значению

20.12.2018


В основе расчета конструкций по предельным состояниям лежат четко установленные две группы предельных состояний конструкций, которые необходимо не допустить, используя систему расчетных коэффициентов; их введение гарантирует, что предельные состояния не наступят при неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов. При наступлении предельных состояний конструкции перестают удовлетворять требованиям эксплуатации, - разрушаются или теряют устойчивость под действием внешних нагрузок и воздействий, или в них развиваются недопустимые перемещения или трещины. С целью более адекватного и экономичного расчета предельные состояния разделены на две принципиально отличающиеся группы - более ответственную первую (конструкции разрушаются при наступлении состояний этой группы) и менее ответственную вторую (конструкции перестают удовлетворять требованиям нормальной эксплуатации, но не разрушаются, их можно ремонтировать). Такой подход позволил дифференцированно назначать нагрузки и прочностные показатели материалов: с целью предохранения от наступления предельных состояний при расчетах по первой группе нагрузки принимаются несколько завышенными, а прочностные характеристики материалов - заниженными по сравнению с расчетами по второй группе. Это позволяет избежать наступления предельных состояний I группы.

В более ответственную первую группу входят предельные состояния по несущей способности, во вторую - по пригодности к нормальной эксплуатации. В предельные состояния первой группы включают хрупкое, вязкое или иного характера разрушение; потерю устойчивости формы конструкции или ее положения; усталостное разрушение; разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (агрессивность среды, попеременное замораживание и оттаивание, и т.д.). Выполняют расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением; расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров; расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся подвижной или пульсирующей нагрузки; расчет на устойчивость тонкостенных конструкций и т.д. Недавно к расчетам по первой группе добавился новый расчет на прогрессирующее обрушение высоких зданий при воздействиях, не предусмотренных условиями нормальной эксплуатации.

К предельным состояниям второй группы относят недопустимое по ширине и продолжительное раскрытие трещин (если по условиям эксплуатации они допустимы), недопустимые перемещения конструкций (прогибы, углы поворота, углы перекоса и амплитуды колебаний). Расчеты по предельным состояниям конструкций и их элементов выполняют для стадий изготовления, транспортирования, монтажа и эксплуатации. Так, для обычного изгибаемого элемента предельными состояниями I группы будут исчерпание прочности (разрушение) по нормальному и наклонному сечениям; предельными состояниями II группы - образование и раскрытие трещин, прогиб (рис. 3.12). При этом допустимая ширина раскрытия трещин при длительно действующей нагрузке составляет 0,3 мм, так как при этой ширине происходит самозалечивание трещин растущим кристаллическим сростком в цементном камне. Так как каждая десятая доля миллиметра допустимого раскрытия трещин существенно влияет на расход арматуры в конструкциях с обычным армированием, то увеличение допустимой ширины раскрытия трещин даже на 0,1 мм играет очень большую роль в экономии арматуры.

Факторами, входящими в расчет по предельным состояниям (расчетными факторами) являются нагрузки на конструкции, их размеры, и механические характеристики бетона и арматуры. Они непостоянны, и для них характерен разброс значений (статистическая изменчивость). В расчетах учитывают изменчивость нагрузок и механических характеристик материалов, а также факторы нестатистического характера, и различные условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Все расчетные факторы и расчетные коэффициенты нормируют в соответствующих СП.

Предельные состояния требуют дальнейшего глубокого исследования: так, в расчетах разделяют нормальные и наклонные сечения в одном элементе (желателен единый подход), рассматривается нереальный механизм разрушения в наклонном сечении, не учитываются вторичные эффекты в наклонной трещине (нагельный эффект рабочей арматуры и силы зацепления в наклонной трещине (см. рис. 3.12, и др.)).

Первым расчетным фактором являются нагрузки, которые делятся на нормативные и расчетные, а по длительности действия - на постоянные и временные; последние могут быть кратковременными и длительными. Отдельно рассматривают более редко проявляющиеся особые нагрузки. К постоянным нагрузкам относят собственный вес конструкций, вес и давление грунта, усилия предварительного напряжения арматуры. Длительные нагрузки - это вес стационарного оборудования на перекрытиях, давление газов, жидкостей, сыпучих тел в емкостях, вес содержимого в складах, библиотеках, и пр.; установленная нормами часть временной нагрузки в жилых домах, в служебных и бытовых помещениях; длительные температурные технологические воздействия от оборудования; снеговые нагрузки для III...VI климатических районов с коэффициентами 0,3...0,6. Эти значения нагрузок являются частью их полного значения, они вводятся в расчет с учетом влияния длительности действия нагрузок на перемещения, деформации, образование трещин. К кратковременным нагрузкам относят часть нагрузки на перекрытия жилых и общественных зданий; вес людей, деталей, материалов в зонах обслуживания и ремонта оборудования; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; снеговые и ветровые нагрузки; температурные климатические воздействия.

К особым нагрузкам относятся сейсмические и взрывные воздействия; нагрузки, вызываемые неисправностью оборудования и нарушением технологического процесса; неравномерными деформациями основания. Нормативные нагрузки устанавливают нормами по заранее заданной вероятности превышения средних значений или по номинальным значениям. Нормативные постоянные нагрузки принимают по проектным значениям геометрических и конструктивных параметров элементов и по средним значениям плотности материала. Нормативные временные технологические и монтажные нагрузки задают по наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений. Величины расчетных нагрузок при расчете конструкций по I группе предельных состояний определяют умножением нормативной нагрузки на коэффициент надежности по нагрузке уf как правило, уf > 1 (это - один из факторов недопущения наступления предельного состояния). Коэффициент уf = 1,1 для собственного веса железобетонных конструкций; уf = 1,2 для собственного веса конструкций из бетонов на легких заполнителях; уf = 1,3 для различных временных нагрузок; но уf = 0,9 для веса конструкций в случаях, когда уменьшение массы ухудшает условия работы конструкции - в расчете устойчивости против всплытия, опрокидывания и скольжения. При расчете по менее опасной II группе предельных состояний уf = 1.

Так как одновременное действие всех нагрузок с максимальными значениями практически невероятно, для большей надежности и экономичности конструкции рассчитывают на разные сочетания нагрузок: они могут быть основными (в них входят постоянные, длительные и кратковременные нагрузки), и особыми (включающими постоянные, длительные, возможные кратковременные и одну из особых нагрузок). В основных сочетаниях при учете не менее двух временных нагрузок их расчетные значения (или соответствующие им усилия) умножают на коэффициенты сочетания: для длительных нагрузок w1 = 0,95; для кратковременных w2 = 0,9; при одной временной нагрузке w1 = w2 = 1. При трех и более кратковременных нагрузках их расчетные значения умножают на коэффициенты сочетаний: w2 = 1 для первой по степени важности кратковременной нагрузки; w2 = 0,8 для второй; w2 = 0,6 для третьей и всех остальных. В особых сочетаниях нагрузок принимают w2 = 0,95 для длительных нагрузок, w2 = 0,8 для кратковременных, кроме случаев проектирования конструкций в сейсмических районах. С целью экономичного проектирования, учитывая степень вероятности одновременного действия нагрузок, при расчете колонн, стен, фундаментов многоэтажных зданий временные нагрузки на перекрытия допускается снижать умножением на коэффициенты: для жилых домов, общежитий, служебных помещений и т.п. при грузовой площади А > 9 м2

Для залов читален, собраний, торговых и др. участков обслуживания и ремонта оборудования в производственных помещениях при грузовой площади А > 36 м2

где n - общее число перекрытий, временные нагрузки от которых учитывают при расчете рассматриваемого сечения.

В расчетах учитывают степень ответственности зданий и сооружений; она зависит от степени материального и социального ущерба при достижении конструкциями предельных состояний. Поэтому при проектировании учитывают коэффициент надежности по назначению уn, который зависит от класса ответственности зданий или сооружений. На коэффициент надежности по назначению делят предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин, и умножают на него расчетные значения нагрузок, усилий и других воздействий. По степени ответственности здания и сооружения делятся на три класса: I класс. уn = 1 - здания и сооружения, имеющие высокое народнохозяйственное или социальное значение; главные корпуса ТЭС, АЭС; телевизионные башни; крытые спортивные сооружения с трибунами; здания театров, кинотеатров, и др.; II класс yn = 0,95 - менее значительные здания и сооружения, не входящие в классы I и III; III класс yn = 0,9 - склады, одноэтажные жилые дома, временные здания и сооружения.

Для более экономичного и обоснованного проектирования железобетонных конструкций установлены три категории требований к трещиностойкости (к сопротивлению образованию трещин в стадии I или сопротивлению раскрытию трещин в стадии II напряженно-деформированного состояния). Требования к образованию и раскрытию нормальных и наклонных к продольной оси элемента трещин зависят от вида применяемой арматуры и условий эксплуатации. При первой категории не допускается образование трещин; при второй категории допускается ограниченное по ширине непродолжительное раскрытие трещин при условии их последующего надежного закрытия; при третьей категории допускается ограниченное по ширине непродолжительное и продолжительное раскрытие трещин. К непродолжительному раскрытию относится раскрытие трещин при действии постоянных, длительных и кратковременных нагрузок; к продолжительному - раскрытие трещин при действии только постоянных и длительных нагрузок.

Предельная ширина раскрытия трещин аcrc, при которой обеспечиваются нормальная эксплуатация зданий, коррозионная стойкость арматуры и долговечность конструкции, в зависимости от категории требований по трещиностойкости не должна превышать 0,1...0,4 мм (см. табл. 3.1).

Предварительно напряженные элементы, находящиеся под давлением жидкости или газов (резервуары, напорные трубы и т.п.) при полностью растянутом сечении со стержневой или проволочной арматурой, а также при частично сжатом сечении с проволочной арматурой диаметром 3 мм и менее, должны отвечать требованиям первой категории. Другие предварительно напряженные элементы в зависимости от условий работы конструкции и вида арматуры должны отвечать требованиям второй или третьей категории. Конструкции без предварительного напряжения со стержневой арматурой класса А400, А500 должны отвечать требованиям третьей категории (см. табл. 3.1).

Порядок учета нагрузок при расчете конструкций на трещиностойкость зависит от категории требований (табл. 3.2). Чтобы не допустить выдергивания напрягаемой арматуры из бетона под нагрузкой и внезапного разрушения конструкций, на концах элементов в пределах длины зоны передачи напряжений с арматуры на бетон не допускается образование трещин при совместном действии всех нагрузок (кроме особых), вводимых в расчет с коэффициентом уf = 1. Трещины, возникающие при изготовлении, транспортировании и монтаже в зоне, которая впоследствии под нагрузкой будет сжатой, приводят к снижению усилий образования трещин в растянутой при эксплуатации зоне, увеличению ширины раскрытия и росту прогибов. Влияние этих трещин учитывают в расчетах. Наиболее важные для конструкции или здания расчеты прочности базируются на III стадии напряженно-деформированного состояния.

Конструкции обладают необходимой прочностью, если усилия от расчетных нагрузок (изгибающего момента, продольной или поперечной силы, и др.) не превышают усилий, воспринимаемых сечением при расчетных сопротивлениях материалов с учетом коэффициентов условий работы. На величину усилий от расчетных нагрузок влияют нормативные нагрузки, коэффициенты надежности, расчетные схемы, и др. Величина усилия, воспринимаемого сечением рассчитываемого элемента, зависит от его формы, размеров сечения, прочности бетона Rbn, арматуры Rsn, коэффициентов надежности по материалам ys и уb и коэффициентов условий работы бетона и арматуры уbi и уsi. Условия прочности всегда выражаются неравенствами, причем левая часть (внешнее воздействие) не может значительно превышать правую часть (внутренние усилия); рекомендуется допускать превышение не более 5 %, иначе повышается неэкономичность проекта.

Предельные состояния второй группы. Расчет по образованию трещин, нормальных и наклонных к продольной оси элемента, выполняют для проверки трещиностойкости элементов, к которым предъявляют требования первой категории (если образование трещин недопустимо). Этот расчет производят и для элементов, к трещиностойкости которых предъявляют требования второй и третьей категории, чтобы установить, появляются ли трещины, и в случае их появления перейти к расчету их раскрытия.

Нормальные к продольной оси трещины не появляются, если изгибающий момент от внешних нагрузок не превосходит момента внутренних сил

Наклонные к продольной оси элемента трещины (в приопорной зоне) не появляются, если главные растягивающие напряжения в бетоне не превосходят расчетных значений. При расчете раскрытия трещин, нормальных и наклонных к продольной оси, определяют ширину раскрытия трещин на уровне растянутой арматуры, чтобы она была не более предельной ширины раскрытия, установленной нормами

При расчете перемещений (прогибов) определяют прогиб элементов от нагрузок с учетом длительности их действия fскс, чтобы он не превышал допустимый прогиб fcrc,ult. Предельные прогибы ограничивают эстетическими и психологическими требованиями (чтобы он не был визуально заметен), технологическими требованиями (для обеспечения нормальной работы разных технологических установок, и др.), конструктивными требованиями (учитывающими влияние соседних элементов, ограничивающих деформации), физиологическими требованиями, и др. (табл. 3.3). Предельные прогибы предварительно напряженных элементов, устанавливаемые эстетико-психологическими требованиями, целесообразно увеличивать на высоту выгиба вследствие преднапряжения (строительного подъема), если это не ограничено технологическими или конструктивными требованиями. При расчете прогибов в случае их ограничения технологическими или конструктивными требованиями расчет ведут на действие постоянных, длительных и кратковременных нагрузок; при их ограничении эстетическими требованиями конструкции рассчитывают на действие постоянных и длительных нагрузок. Предельные прогибы консолей, отнесенные к вылету консоли, увеличивают в 2 раза. Нормами установлены предельные прогибы по физиологическим требованиям. Должен также выполняться расчет зыбкости для лестничных маршей, площадок и др., чтобы добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 1000 H при наиболее невыгодной схеме ее приложения не превышал 0,7 мм.

В III стадии напряженно-деформированного состояния в сечениях, нормальных к продольной оси изгибаемых и внецентренно сжатых с относительно большими эксцентриситетами элементов, при двузначной эпюре напряжений, наблюдается одинаковое изгибное напряженно-деформированное состояние (рис. 3.13). Усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы. При этом полагают, что бетон растянутой зоны не работает (obt = О); напряжения в бетоне сжатой зоны равны Rb при прямоугольной эпюре напряжений; напряжения в продольной растянутой арматуре равны Rs; продольная арматура в сжатой зоне сечения испытывает напряжение Rsc.

В условии прочности момент внешних сил не должен быть более момента, воспринимаемого внутренними усилиями в сжатом бетоне и в растянутой арматуре. Условие прочности относительно оси, проходящей через центр тяжести растянутой арматуры

где M - момент внешних сил от расчетных нагрузок (во внецентренно сжатых элементах - момент внешней продольной силы относительно той же оси), M = Ne (е - расстояние от силы N до центра тяжести сечения растянутой арматуры); Sb - статический момент площади сечения бетона сжатой зоны относительно той же оси; zs - расстояние между центрами тяжести растянутой и сжатой арматуры.

Напряжение в напрягаемой арматуре, расположенной в сжатой от действия нагрузок зоне, osc определяют по работе. В элементах без предварительного напряжения osc = Rsc. Высоту сжатой зоны х для сечений, работающих по случаю 1, когда в растянутой арматуре и сжатом бетоне достигнуты предельные сопротивления, определяют из уравнения равновесия предельных усилий

где Ab - площадь сечения бетона сжатой зоны; для N принимают знак минус при внецентренном сжатии, знак + при растяжении, N = 0 при изгибе.

Высоту сжатой зоны х для сечений, работающих по случаю 2, когда разрушение происходит по сжатому бетону хрупко, а напряжения в растянутой арматуре не достигают предельного значения, также определяют из уравнения (3.12). Ho в этом случае расчетное сопротивление Rs заменяют напряжением os < Rs. Опытами установлено, что напряжение os зависит от относительной высоты сжатой зоны e = x/ho. Его можно определить по эмпирической формуле

где со = xo/ho - относительная высота сжатой зоны при напряжении в арматуре os = osp (оs = О в элементах без предварительного напряжения).

При os = osp (или при os = 0) фактическая относительная высота сжатой зоны e = 1, и со может рассматриваться как коэффициент полноты фактической эпюры напряжений в бетоне при замене ее условной прямоугольной эпюрой; при этом усилие бетона сжатой зоны Nb = w*ho*Rb (см. рис. 3.13). Значение со называется характеристикой деформативных свойств бетона сжатой зоны. Граничная относительная высота сжатой зоны играет большую роль в расчетах прочности, так как она ограничивает оптимальный случай разрушения, когда растянутая и сжатая зоны одновременно исчерпывают прочность. Граничную относительную высоту сжатой зоны eR = xR/h0, при которой растягивающие напряжения в арматуре начинают достигать предельных значений Rs, находят из зависимости eR = 0,8/(1 + Rs/700), или по табл. 3.2. В общем случае расчет прочности сечения, нормального к продольной оси, выполняют в зависимости от значения относительной высоты сжатой зоны. Если e < eR, высоту сжатой зоны определяют из уравнения (3.12), если же e > eR, прочность рассчитывают. Напряжения высокопрочной арматуры os в предельном состоянии могут превышать условный предел текучести. По данным опытов это может происходить, если e < eR. Превышение оказывается тем большим, чем меньше значение e, Опытная зависимость имеет вид

В расчетах прочности сечений расчетное сопротивление арматуры Rs умножают на коэффициент условий работы арматуры

где n - коэффициент, принимаемый равным: для арматуры классов А600 - 1,2; А800, Вр1200, Вр1500, К1400, К1500 - 1,15; A1000 - 1,1. 4 определяют при ys6 = 1.

Нормы устанавливают предельный процент армирования: площадь сечения продольной растянутой арматуры, а также сжатой, если она требуется по расчету, в процентах от площади сечения бетона, us = As/bh0 принимают не менее: 0,1 % - для изгибаемых, внецентренно растянутых элементов и внецентренно сжатых элементов при гибкости l0/i < 17 (для прямоугольных сечений l0/h < 5); 0,25 % - для внецентренно сжатых элементов при гибкости l0/i > 87 (для прямоугольных сеченийl0/h > 25); для промежуточных значений гибкости элементов значение us определяют но интерполяции. Предельный процент армирования изгибаемых элементов с одиночной арматурой (в растянутой зоне) определяют из уравнения равновесия предельных усилий при высоте сжатой зоны, равной граничной. Для прямоугольного сечения

Предельный процент армирования с учетом значения eR, для предварительно напряженных элементов

Для элементов без предварительного напряжения

Предельный процент армирования уменьшается с повышением класса арматуры. Сечения изгибаемых элементов считают переармированными, если их процент армирования выше предельного. Минимальный процент армирования необходим для восприятия не учитываемых расчетом усадочных, температурных и других усилий. Обычно umin = 0,05 % для продольной растянутой арматуры изгибаемых элементов прямоугольного сечения. Каменные и армокаменные конструкции рассчитывают аналогично железобетонным конструкциям по двум группам предельных состояний. Расчет по I группе должен предотвратить конструкцию от разрушения (расчет по несущей способности), от потери устойчивости формы или положения, усталостное разрушение, разрушение при совместном действии силовых факторов и влияния внешней среды (замораживания, агрессии, и пр.). Расчет по II группе направлен на предотвращение конструкции от недопустимых деформаций, чрезмерного раскрытия трещин, отслоения облицовки кладки. Этот расчет выполняют тогда, когда в конструкциях не допускаются трещины или ограничивается их раскрытие (облицовки резервуаров, внецентренно сжатые стены и столбы при больших эксцентриситетах и т.д.), или ограничивается развитие деформации из условий совместной работы (заполнение стен, каркас, и т.д.).

Этот метод с 1955 г. введен в практику расчета строительных конструкций. Предельным называют такое состояние конструкции, при котором невозможна ее дальнейшая нормальная эксплуатация. В соответствии со строительными нормами и правилами (СНиП) установлено три предельных состояния: первое предельное состояние, определяемое несущей способностью (прочностью или устойчивостью); второе предельное состояние, наступающее при появлении чрезмерных деформаций или колебаний, нарушающих нормальную эксплуатацию;  третье предельное состояние, возникающее при образовании трещин или других местных повреждений. Расчет по первому предельному состоянию является одним из вариантов расчета по предельным (разрушающим) нагрузкам, но в отличие от последнего учитывается еще и вероятность наступления предельного состояния. При расчете по предельным состояниям вместо одного общего коэффициента запаса вводят три отдельных коэффициента. Коэффициент перегрузки n1 учитывает неточности в определении нагрузки. Обычно нагрузку устанавливают нормами на основании результатов длительных наблюдений. Такую нагрузку называют нормативной Рн. Фактическая нагрузка может отклоняться от нормативной в неблагоприятную сторону. Для учета такого отклонения и вводят коэффициент перегрузки. Умножая нормативную нагрузку на этот коэффициент, получают расчетную нагрузку: Р n. Степень точности в определении различных нагрузок неодинакова, поэтому для каждого вида нагрузки вводится свой коэффициент перегрузки. Постоянная нагрузка (собственный вес конструкции) может быть подсчитана наиболее точно, поэтому коэффициент перегрузки принимается небольшим n 1,1. Временную нагрузку – вес поезда, толпы, давление на сооружение ветра, снега – точно подсчитать невозможно. В связи с этим для таких нагрузок вводятся повышенные коэффициенты перегрузки. Например, для снеговой нагрузки n 1,4. Расчетная нагрузка получается путем суммирования всех видов действующих нагрузок, помноженных на соответствующие коэффициенты перегрузки. Коэффициент однородности материала k 1, учитывающий возможное снижение прочности материала против установленной нормами и называемой нормативным сопротивлением Расчетное сопротивление данного материала получается путем умножения нормативного сопротивления на коэффициент однородности. Чем более однороден материал, тем ближе к единице коэффициент k. Нормативное сопротивление – то напряжение, которое, как минимум, должно быть обеспечено при испытаниях образцов материала данной марки. Для пластичных материалов за нормативное сопротивление принимают наименьшее значение предела текучести, а для хрупких – предела прочности. Например, для стали марки Ст.3 нормативное значение предела текучести МПа. В действительности возможны некоторые отклонения в ту или другую сторону, поэтому коэффициент однородности принимается k = 0,85 – 0,9, и расчетное сопротивление оказывается равным аПМ. Коэффициент условий работы m, который учитывает все остальные весьма разнообразные обстоятельства, могущие вызвать понижение несущей способности конструкции, как-то: специфические особенности работы материала, неточности расчетных предпосылок, неточности изготовления, влияние влажности, температуры, неравномерности распределения напряжений по сечению и другие факторы, которые не учтены в расчете прямым путем. При неблагоприятных условиях принимают, при нормальных, при особо благоприятных в отдельных случаях принимаютm 1. Основное расчетное условие метода предельных состояний может быть в общем виде записано следующим образом: где N – расчетное усилие, т.е. усилие (или изгибающий момент) от нормативных нагрузок, умноженных на соответствующие коэффициенты перегрузки; – нормативные сопротивления материала (предел прочности, текучести); – коэффициенты однородности; S – геометрические характеристики сечения (площадь, момент сопротивления); 1,. .i – коэффициенты условия работы; f – функция, соответствующая роду усилия (сжатие, растяжение, кручение, изгиб и т. д.). При расчете элементов конструкции, работающих на растяжение или сжатие, условие метода предельных состояний можно записать в следующем виде: где N – расчетное усилие; FНТ – площадь (нетто) опасного сечения. При расчете балок условие записывается так: Rm, где M – расчетный изгибающий момент; W – момент сопротивления сечения; m – коэффициент условий работы, который для остальных балок в большинстве случаев принимается равным единице. При этом возможны два случая. По условиям эксплуатации допустимые остаточные прогибы. В этом случае несущая способность балки определяется по изгибающему моменту: , где WПЛ – пластичный момент сопротивления; R – расчетное сопротивление. Если остаточные прогибы недопустимы, то предельным состоянием считается то, при котором напряжения в крайних волокнах достигают расчетного сопротивления. Несущая способность определяется из условия W, где W – момент сопротивления сечения при работе в упругой стадии. При определении несущей способности двутавровых и тому подобных балок с тонкими стенками и мощными поясами во всех случаях рекомендуется пользоваться предыдущей формулой MR W. Расчет статически неопределимых балок производится в предположении выравнивания изгибающих моментов в местах возможного образования пластических шарниров. Методы расчета выбираются в зависимости от условий работы конструкции и требований, которые к ней предъявляются. Если по условиям эксплуатации требуется ограничить величину деформаций конструкции, производится расчет на жесткость. Конечно, расчет на жесткость не заменяет расчета на прочность, но возможны случаи, когда размеры поперечных сечений элементов конструкции из расчета на жесткость оказываются больше, чем из расчета на прочность. В этом случае основным, решающим для данной конструкции оказывается расчет на жесткость.