Меню

Конденсатоотводчики - общий сравнительный обзор. Путешествуем по всему миру

Дополнительные элементы крыши

Как выбрать конденсатоотводчик?

Полезно: энергетикам, механикам

Если все мужики одинаковые, то зачем женщины так долго тянут с выбором? Но сегодня задача проще, конденсатоотводчик не на всю жизнь, а как говорит статистика на 5 – 7 лет в среднем. И чтобы Вам не мучиться как, что и куда поставить чтобы конденсат был отведён правильно наша компания немного пояснит на что стоит обратить внимание. Тут ответ простой: доверьте это профессионалам, просто соберите нужные параметры системы и потребителя пара, а мы или наши коллеги из других организаций сделают уже подбор.


Если брать прямые участки труб то, на них чаще всего ставится термодинамические или термостатические конденсатоотводчики. При этом очень важно где эксплуатируется данный трубопровод на улице или в помещении

Обращаясь к нашему опыту мы всегда ставили на прямые участки термодинамические, а на потребители поплавковые.

При этом очень важно знать параметры пара, такие как давление. Возникнет вопрос: Где-ж его взять то, давление?! Вы будете смеяться, его нужно измерить. Если стоит теплообменник то перед ним лучше поставить манометр и это очень важно.

Следующее, что необходимо – это расход конденсата, обычно стоят счётчики. Как правило – это счётчики горячей воды. А вот кто не знает расход, встречаются такие сложности, то смело ищите этот параметр в паспорте потребителя пара. Чаще всего там есть это значение, либо на худой конец есть расход пара, который потребляет этот агрегат. Суть тут следующая: Расход пара = расход конденсата, т.к. весь пар должен превратиться в конденсат, а иначе какие мы после этого волшебники)))

Ну и, конечно, нужно знать температуру пара. Иначе подбор не будет правильно осуществлён.

Ну и последний параметр – это диаметр присоединения. Да часто случается что заказываеют опираясь только на этот параметр. Это просто и не профессионально. Почему? Возможна не корректная работа конденсатоотводчика или излишними тратами (можно подобрать и дешевле). Тут разные могут быть ещё неприятности такие как: излишнее охлаждение конденсата (не так неприятно) но если скаканёт давление и плавно прискочет в эти излишки, то вероятно повредит конденсатоотводчик и он в последствии может выйти из строя.

Также можно сделать совсем наоборот, т.е. поставить конденсатоотводчик с более низкой пропускной способностью, чем необходимо. Что будет!? Денег съэкономите на покупке и возможно «подтопление» конденсатом постребитель пара. Ну к примеру ёмкость будет недостаточно нагреваться, отсюда потери времени, а возможно нарушение технологии и прокисший кефир на выходе (ну это я так.. перегнул конечно)

Т. Гуцуляк, А. Кирилюк

Из-за постоянного удорожания энергоресурсов все промышленные отрасли заняты поиском альтернативных источников повышения энергоэффективности. Водяной пар, как одно из средств передачи тепловой энергии, становится всё более популярным

Важную роль в эффективном отборе тепла от пара, помимо теплообменников, играют конденсатоотводчики. Их главная задача - отбор от водяного пара как можно большего количества тепла - довольно непроста и зависит не только от наличия самих конденсатоотводчиков в системе, но также и от того, насколько правильно они подобраны. Чтобы правильно выбрать конденсатоотводчик для конкретного производственного процесса, необходимо хорошо знать и понимать принципы его работы и специфику применения пара в данном процессе.

Назначение конденсатоотводчиков

Конденсатоотводчик должен препятствовать уменьшению коэффициента теплопередачи. Уменьшение происходит за счет образования конденсата у потребителя пара, либо в паропроводе. Задача данного оборудования - отводить конденсат, не допуская при этом «пролет» и выпуск пара.

Пар, теряя тепло, необходимое для теплообменных процессов, отдает его стенкам трубопровода, превращаясь в конденсат. Если его не отводить - ухудшается «качество» пара, возникают кавитация и гидроудары. Наилучший вариант, когда конденсатоотводчик способен отводить конденсат, а также воздух и другие неконденсированные газы.

Не существует универсального конденсатоотводчика, подходящего для всех задач и условий применения. Все типы конденсатоотводчиков отличаются по принципу работы, при этом имея свои недостатки и преимущества. Всегда существует лучшее решение для конкретного применения в пароконденсатной системе. Выбор конденсатоотводчика зависит от
температуры, давления и количества образуемого конденсата.

Рис. 1. Основные типы:
а) - механический (поплавковый); б) - термодинамический; в) - термостатический

Существует три принципиально разных типа: механические, термостатические и термодинамические.

Принцип действия механических основан на разнице плотности пара и конденсата. Клапан приводится в действие шаровым поплавком или поплавком в виде перевернутого стакана. Механические конденсатоотводчики обеспечивают непрерывный отвод конденсата при температуре пара, поэтому этот тип устройств хорошо подходит для теплообменных аппаратов с большими поверхностями теплообмена и интенсивным образованием больших объемов конденсата.

Термостатические конденсатоотводчики определяют разницу температуры пара и конденсата. Чувствительный элемент и исполнительный механизм в данном случае - термостат. Прежде чем конденсат будет отведен, он должен быть охлажден до температуры ниже температуры сухого насыщенного пара.

В основе принципа действия термодинамического конденсатоотводчика лежит разница скоростей прохождения пара и конденсата в зазоре между диском и седлом. При прохождении конденсата из-за низкой скорости диск поднимается и пропускает конденсат. При поступлении пара в термодинамический конденсатоотводчик скорость увеличивается, приводя к падению статического давления, и диск опускается на седло. Пар, находящийся над диском, благодаря большей площади контакта, удерживает диск в закрытом положении. По мере конденсации пара давление над диском падает, и диск снова начинает подниматься, пропуская конденсат.

Таблица 1. Типы конденсатоотводчиков


Таблица 2. Сравнение конденсатоотводчиков и их типов

Выбор конденсатоотводчика

Для правильного подбора условного диаметра конденсатоотводчика нужно сначала определить входное давление, см. рис. 3.

Если конденсатоотводчик установлен после паропотребляющей установки, входное давление на 15% ниже давления на входе в установку.

Для примерного расчета противодавления, принимаем, что каждый метр подъема трубопровода составляет 0,11 бар противодавления.

Перепад давления = Входное давление - Противодавление.

Рассчитать количество конденсата можно, используя техническую документацию производителя паропотребляющего оборудования с учетом коэффициента запаса по расходу конденсата. На основных паропроводах, в теплообменниках и подобном оборудовании запас пропускной способности нужно установить в 2,5 - 3 раза больше расчетного. В других случаях запас больше в 1,5 - 2 раза.

После расчета коэффициента запаса по расходу конденсата, диаметр конденсатоотводчика выбирается по диаграмме
пропускной способности (см. рис.2), которую предоставляет завод-производитель.

Ниже в качестве примера приведены диаграммы пропускной способности AYVAZ SK-51 (данные и рекомендации предоставлены компанией «АЙВАЗ УКРАИНА»).

Рис. 2. Диаграмма пропускной способности SK-51 (1/2”-3/4”-1”)

Пример использования диаграммы (см. рис. 2): для конденсатоотводчика задан расход по конденсату 180 кг/час.

Конденсат отводится от теплообменника при давлении 6 бар и противодавлении 0,2 бар. Перепад давления 6 - 0,2 = 5,8 бар.
Расход по конденсату 180 х 3 = 540 кг/час.
Коэффициент запаса: 3.

Для отвода 540 кг/час конденсата при перепаде 5,8 бар, по синей линии на диаграмме, помеченной цифрой 10 (пропускная способность в данном случае составляет 700 кг/час), выбираем конденсатоотводчик диаметром 1” (Ду25). Цифра 10 обозначает размер отверстия выпускного клапана. Как видно из диаграммы (рис. 2) конденсатоотводчики диаметром 1/2” и 3/4” выбирать в данном случае нельзя, т.к. их пропускная способность по конденсату ниже требуемой.

Использование энергии пара вторичного вскипания

Во время нагрева воды при постоянном давлении её температура и теплосодержание растет. Это продолжается до тех пор, пока вода не закипит. Достигая точки кипения, температура воды не изменяется до тех пор, пока вода полностью не превратится в пар. И поскольку требуется максимально использовать тепловую энергию пара, используются конденсатоотводчики, см. рис 3.

Рис. 3. Использование конденсата и пара вторичного вскипания для теплообмена

Конденсат имеет ту же температуру при заданном давлении, что и пар. Когда конденсат после конденсатоотводчика попадает в зону атмосферного давления, он моментально вскипает и часть его испаряется, т.к. температура конденсата выше температуры кипения воды при атмосферном давлении.

Пар, который образуется при вскипании конденсата, называют паром вторичного вскипания.

Т.е. это пар, который образуется в результате попадания конденсата в атмосферу или среду с низким давлением и температурой.

Расчет количества пара вторичного вскипания:

где:
Эк : Энтальпия конденсата при попадании в конденсатоотводчик при заданном давлении (кДж/кг).
Эв : Энтальпия конденсата после конденсатоотводчика при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг).
Ст : Скрытая теплота парообразования при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг) трубопровода составляет 0,11 бар противодавления.

Как видно, чем больше разница давлений, тем большее количество пара вторичного вскипания образуется. Тип используемого конденсатоотводчика так же влияет на количество образуемого конденсата. Механические отводят конденсат с температурой близкой к температуре насыщения пара. В то время как термостатические - отводят конденсат с температурой значительно ниже температуры насыщения, при этом количество пара вторичного вскипания уменьшается.

При отборе пара вторичного вскипания нужно учесть, что:

  1. Для получения даже малого количества пара вторичного вскипания потребуется большое количество конденсата. Необходимо обратить особое внимание на пропускную способность конденсатоотводчика. Так же нужно учитывать, после регулирующих клапанов давление как правило низкое.
  2. Сфера применения должна соответствовать таковой для использования пара вторичного вскипания. Количество пара вторичного вскипания должно равняться или его должно быть немного больше, чем требуется для обеспечения технического процесса.
  3. Участок использования пара вторичного вскипания не должен располагаться далеко от оборудования, от которого отводится высокотемпературный конденсат.

Пример расчет количества пара вторичного вскипания в системе, где конденсат отводится сразу после его образования см. ниже.

Возьмем данные из таблицы насыщенного пара: при давлении 8 бар, 170,5°С, энтальпия конденсата = 720,94 кДж/кг. При атмосферном давлении, 100°С, энтальпия конденсата = 419,00 кДж/кг. Разница энтальпий составляет 301.94 кДж/кг. Скрытая теплота парообразования при атмосферном давлении = 2 258 кДж/кг. Тогда количество пара вторичного вскипания составит:

Таким образом, если расход пара в системе равен 1000 кг, то количество пара вторичного вскипания составит 134 кг.

Особенности монтажа конденсатоотводчиков

При установке конденсатоотводчика, следует проследить, чтобы стрелка на его корпусе соответствовала направлению потока, см. рис 4, а).

Конденсатоотводчики поплавкового типа должны устанавливаться строго горизонтально. Некоторые, в специальном исполнении могут устанавливаться вертикально. Вход пара в такие конденсатоотводчики должен быть с нижней стороны, см. рис 4, б).

Конденсатоотводчики должны располагаться ниже подключения паровой линии к оборудованию. В противном случае, возможно подтопление оборудования. В случаях, когда установка конденсатоотводчиков таким образом невозможна, необходимо организовать принудительный отвод конденсата, см. рис 4, в).

Термодинамические конденсатоотводчики работают в любом положении. Однако, горизонтальное положение более предпочтительно при установке см. рис 4, г).

Рис. 4. Правильный монтаж конденсатоотводчика

Конденсатоотводчики не должны устанавливаться друг за другом ни в коем случае. Иначе, второй будет создавать давление, которое негативно скажется на работе первого, который уже смонтирован, см. рис. 5, а).

Фильтры, установленные перед конденсатоотводчиками, должны быть повернуты влево или вправо. В противном случае, в нижней части фильтра будет скапливаться конденсат, что может привести к гидроударам, см. рис. 5, б).


Рис. 5. Установка конденсатоотводчика в системе

Правильный выбор и применение оборудования от производителя AYVAZ - эффективный способ повысить уровень энергосбережения в паровых системах.

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 3 441

Министерство Образования Российской ФеАерации

Московская государственная академия ТОНКОЙ химической технологии им. М. В. Ломоносова

«Процессы И аппараты

химической технологии»

В. М. N/ясоеденков

ПОДБОР КОНДЕНСАТООТВОДЧИКОВ

Учебно-меmОдUЧвское пособие

Москва, 2000

www.mitht.ru/e-library

Рецензент Алексеев П.Г.

Мясоеденков В.М. Подбор KoндeHcaTO~OB. -

М.: МИТХТ. 2000 г.,23 с.

МеТО,4ические указания по подбору конденсатоотводчиков являются необходимым дополнением к методическим указ~ни·

ям по расчету и проектированию различных технологических

установок с использованием в качестве теплоносителя водяного греющего пара.

В указаниях содержатся необходимые сведения о конст· рукции И принципе действия конденсатоотводчиков, выпускае.

мых промышленностью. Методика подбора конденсатоотводчи·

ков позволяет правильно выбрать тип устройства и его номер.

Указания предназначены для студентов 4 ro курса всех cnе·

циальностеЙ.

www.mitht.ru/e-library

ВВЕДЕНИЕ

Для отвода конденсата, образующегося при работе тепло­ обменных аппаратов, в зависимости от давления пара, приме­

няют различные виды устройств.

При давлении на входе не менее 0,1 МПа (1 Krc/cr.i) и про­

тиводавлении не более 50% давления на входе устойчиво рабо­

тают термодинамические конденсатоотводчики. (Здесь и в по­

следующем речь идет об избыточном давлении пара).

При начальном давлении не менее 0,06 МПа рекоменду­

ется устанавливать конденсатоотводчики поплавковые муфто­

вые, которые надежно работают при перепаде давления более 0,05 МПа при постоянном и переменных режимах расходования

При Ар от 0,03 до1,3 МПа для автоматического удаления

конденсата из различных пароприемников пригодны конденса­

ционные горшки с открытым поплавком.

При давлении пара до 0,03 МПа для отвола конденсата могут применяться гидравлические затворы (петли).

1. КОНДЕНСАТООТВОДЧИКИ

ТЕРМОДИНАМИЧЕСКИЕ

Термодинамические конденсатоотводчики применяются

для отвода непереохла~енного конденсата.

Принцип действия конденсатоотводчика заключается в следующем. При поступлении конденсата тарелка (рис.1) под

действием рабочего давления отжимается от седла, открывая

проход конденсату через кольцевую камеру корпуса к выходно­

му отверстию. При поступлении пара в конденсатоотводчик в

щели Me~y тарелкой и седлом течет пар с большей скоростью,

нежели конденсат. Происходит понижение статистического дав­ ления под тарелкой. Тарелка под действием разности давлений прижимается к седлу, оставляя незначительный зазор. Часть пара через зазор поступает в камеру над тарелкой. За счет разности действующих сил (разность площадей тарелки и входного отв~рстия) тарелка плотно прижимается к седлу и

прекращает проход пара.

www.mitht.ru/e-library

В настоящее время отечественная промышленность вы­ пускает 5 моделей термодинамических конденсатоотводчиков.

Базовой моделью является конденсатоотводчик термоди­

намический муфтовый ЧУ"Унный 45ч12нж (первые две цифры

обозначают тип арматуры; буквы за ним - материал корпуса;

цифры после букв - конструктивные особенности изделия в

пределах данного типа и вид привода; последние буквы обозна­

чают материал уплотнительной поверхности). Конденсатоотвод­ чик 45ч12нж предназначен для автоматического отвода из паро­ приемников конденсата водяного пара рабочей температуры до

200 ОС.

Конденсатоотводчик 45ч15нж отличается от базового на­ личием специального устройства - обвода - для принудительно­

го открытия и продувки системы.

Конденсатоотводчики с патрубками под приварку сталь­ ные 45с13нж и 45нж13нж предназначены для автоматического

отвода конденсата водяного пара рабочей температурой до 300

ос из пароприемников.

Конденсатоотводчик Uffуцерно - торцевой стальной

45с16нж предназначен для автоматического отвода конденсата

Рис. 1. Схема конденсатоотводчика термодинамическогомуфтового ЧУ"Унного 45ч12нж: 1 - корпус; 2 - про­ кладка;3 - седло;4 - тарелка;5 - крышка.

www.mitht.ru/e-library

водяного пара рабочей температурой до 250 ОС.

Конденсатоотводчик термодинамический штуцерно - тор­

цевой стальной 45с22нж предназначен для отвода конденсата водяного пара рабочей температурой до 250 ОС.

В рамках этой работы рассмотрены подробно две первые

модели конденсатоотводчика.

Схема подбора термодинамического конденсатоотводчика

где Gмакс.расч.- максимальный расчетный расход пара, т/ч.

2. Оценивается давление пара перед конденсатоотводчи­ ком Р1. Если конденсатоотводчик устанавливается в не­

посредственной близости от теплопотребляющего аппа­

рата, тогда

если конденсат выдавливается (например: конденсат перетекает из греющей камеры первого корпуса в грею­ щую камеру второго корпуса).

При свободном сливе конденсата давление на выхо­

4. Рассчитывается условная пропускная способность КV y в

KVy = A.JAP

где АР - перепад давления на конденсатоотводчике, кгс/см2 ;

G - расчетное количество конденсата, т/ч;

www.mitht.ru/e-library

А-коэффициент, учитывающий температуру конденсата и перепад давлений на конденсатоотводчике (рис.2).

"- "" r--...

0,5 (5)

1,5 (15) дР, Мпа (кrclCM2 )

Рис. 2. Зависимость коэффициента А от перепада давления на

конденсатоотводчике для температуры конденсата,

меньшей на 5 или1 О ос температуры насыщения пара:tK - температура конденсата, ОС;

tM - температура насыщения пара, ОС.

5. По соответствующей таблице выбирают конкретный кон­

денсатоотводчик в зависимости от найденной величины

условной пропускной способности.

ПОДОбрать конденсатоотводчик к 1-му корпусу З-корпусной

выпарной установки. Если расход греющего пара составляет

1500 кгlч, а его давление5 ата. Конденсатоотводчик устанавли­

вается в непосредственной близости от выпарного аппарата.

Давление в трубопроводе после конденсатоотводчика составля­

ет 50% от давления пара послеBblhapHoro аппарата.

Расчетное количество конденсата после выпарного аппа-

G = 1,2·5= 1,8т/ч.

Давление пара перед конденсатоотводчиком

~ = 0,95 . 4= 3,88ТН.

www.mitht.ru/e-library

Давление пара после конденсатоотводчика

Р2 = 0,5 . 3,8= 1,9ати.

Условная пропускная способность

KV y = 1,~== 2,33 т/ч.

По табл. 2 выбираем термодинамический конденсатоот­

водчик в зависимости от условной пропускной способности. Ближайшее большее значение пропускной способности по табл.

2 составляет2,5 т/ч. ДИаметр условного проходаD y будет ра-

вен 50 мм. Размеры

конденсатоотводчика выбираются по

табл.1: L = 200 ММ;

L 1 = 24мм:

Н макс= 103мм;

60мм;

Do = 115ММ.

Таблица 1

Размеры конденсатоотводчика термодинамического

ДИаметр ус-

Размеры, мм

прохода Оу,

Н тах

Таблица 2

Технические данные конденсатоотводчика 45ч12нж

Диаметр ус-

Давление,

Условная

пропускная

прохода Ov,

ность КVy ,

Р пр

t = 200ос

www.mitht.ru/e-library

Продолжение

Таблица 3

Размер... конденсатоотводчика термодинамического собводом 45ч16нж (рис. 3)

Диаметр ус-

Размеры, мм

прохода Оу,

Н макс

Конденсатоотводчик в переводе с английского языка «Steam trap» означает ловушка для пара. Основная функция его заключается в непрерывном удалении конденсата водяного пара из системы трубопроводов и теплотехнического (теплообменного) оборудования, использующего пар. Конденсат может образовываться при потере паром тепла в теплообменниках или в процессе нагрева системы трубопроводов и установок, когда часть пара осаждается на внутренних стенках системы, превращаясь в воду. Присутствие конденсата в системах пароснабжения приводит к гидроударам, потери тепловой мощности и понижению качества пара.
От качества работы конденсатоотводчика зависит не только бесперебойная работа пароконденсатной системы, но и ее безопасная эксплуатация. Подбор конденсатоотводчика основывается на рабочей температуре и давлении в системе, а также на количестве образующегося конденсата.

Основные требования к конденсатоотводчикам, следующие из их предназначения:

Бесперебойное и надежное отведение конденсата без потерь свежего пара.
. Своевременное отведение воздуха и газов в момент ввода в эксплуатацию паровой установки.
. Компактность.
. Стойкость к воздействию среды с абразивными включениями.
. Стойкость к гидроударам и долгий срок службы.
. Большая производительность при небольших перепадах давлений (например, дренаж паропровода при пусковых режимах).
. Отведение небольшого количества конденсата без потерь пара при большом перепаде давлений (например, дренаж паропровода в нормальных условиях эксплуатации).

Чтобы соответствовать таким многообразным требованиям существуют несколько типов конденсатоотводчиков, отличающихся по принципу работы:

Поплавковые (механические) конденсатоотводчики, которые управляются уровнем конденсата;
. термические конденсатоотводчики, которые управляются температурой конденсата;
. термодинамические конденсатоотводчики, включающиеся в работу в зависимости от состояния среды.

Механические (поплавковые) конденсатоотводчики.

Применяются для отведения конденсата из теплообменников, в также в системах, где требуется быстрое опорожнение от конденсата. Принцип работы механических конденсатоотводчиков основывается на разной плотности пара и конденсата, а также на усилии закрытия от поплавка.

Конденсат, наполняя внутреннюю камеру конденсатоотводчика, поднимает поплавок, открывая при этом выпускной клапан. При поступлении пара в конденсатоотводчик, уровень конденсата снижается, и выпускной клапан закрывается. осуществляют непрерывное отведение конденсата практически при температуре насыщения пара. Этот тип конденсатоотводчиков целесообразен для теплообменных аппаратов с большой поверхностью теплообмена и интенсивным образованием больших объемов конденсата.

Преимущества поплавковых конденсатоотводчиков:

Непрерывный вывод конденсата из системы при температуре насыщения.
. Отвод больших объемов конденсата без потери пара.
. Автоматический отвод воздуха и неконденсированный газов при пусковых и нормальных режимах работы.
. Отвод конденсата при малых и больших перепадах давлений, нестабильных значениях перепада давлений и расхода.
. Быстрое опорожнение системы.
. Ремонтопригодность. Замена регулятора на другой (с другим сечением) без демонтажа конденсатоотводчика.

Недостатки поплавковых конденсатоотводчиков:

Подвержены замерзанию при установке на улице (при отрицательных температурах).
. Большие габаритные размеры.
. Слабая устойчивость к гидроударам.

Термические конденсатоотводчики.

Принцип управления этого конденсатоотводчика основан на изменении температуры конденсата. Если температура внутри клапана становится ниже на несколько градусов температуры насыщенного пара, клапан - открывается; как только температура приближается к значению для соответствующего давления пара - закрывается. Характер работы термического конденсатоотводчика - дискретный (периодический). При выборе его исполнения и настроек можно варьировать значениями температуры открытия и закрытия клапана.
К этой группе конденсатоотводчиков относятся биметаллические и мембранно-капсульные конденсатоотводчики.

Биметаллические конденсатоотводчики.

Применяются в системах отопления и горячего водоснабжения.

Работа термодинамического конденсатоотводчика основана на аэродинамическом эффекте и термодинамических свойствах воды. Так как в потоке среды сумма статического давления (потенциальная энергия) и динамическое давление напора (кинетическая энергия) всегда величина постоянная, при снижении статического (манометрического) давления, динамическое давление возрастает и наоборот. Во время пуска системы когда корпус конденсатоотводчика наполняется холодным конденсатом, диск клапана прижимается вверх, что дает возможность конденсату беспрепятственно проходить через выпускные отверстия. По мере разогрева системы, температура конденсата возрастает и статическое давление, соответственно, повышается. В свою очередь, часть статического давления преобразуется в скорость в зазоре между седлом и диском, что приводит к опусканию диска и закрытию выпускных отверстий.

Преимущества термодинамических конденсатоотводчиков:

Компактность, простота конструкции и небольшой вес.
. Возможность применения в системах с перегретым паром.
. Монтаж в любом положении.
. Устойчивость к гидроударам, вибрации, коррозии и размораживанию.

Недостатки этого типа:

. «Пролетный пар» при срабатывании.
. Противодавление не должно превышать 60 % от давления в системе.
. Плохое отведение воздуха.
. Требуется периодическое обслуживание: открывать конденсатоотводчик для образования новой паровой подушки над пластиной клапана.
. При изменении погодных условий (ветер, дождь, снег и тд) увеличивается частота циклов срабатывания, соответственно уменьшается срок эксплуатации.

Итак, существенно отличаются по принципу работы и, соответственно, имеют применение в разных системах и условиях эксплуатации. Выбор оптимального типа зависит от таких рабочих параметров системы, как: химический состав, температура и давление рабочей среды, температура окружающей среды, пропускная способность системы и тд. Все эти параметры обозначены в опросном листе, который необходимо заполнить при заявке на подбор конденсатоотводчика специалистами нашей компании.

Грамотный подбор конденсатоотводчика обеспечивает не только бесперебойное и беспроблемное функционирование системы, но и оптимизации затрат в результате повышения энергоэффективности системы. Неправильный же подбор приводит к некорректной работе системы в целом и, соответственно, дополнительным расходам материальных средств.

Для корректной работы системы и правильности подбора (определения типа) можно обратиться к специалистам нашей компании, которые имеют большой опыт в применении конденсатоотводчиков в пароконденсатных системах и регулярно проходят обучение у ведущих производителей данного оборудования.

Будем рады ответить на вопросы любым удобным для вас способом!

Конденсатоотводчик - это автоматический клапан, назначение которого пропускать конденсат и не пропускать пар. В английском языке термин "конденсатоотводчик" звучит как "steam trap", что можно перевести как "ловушка пара"; по-испански "purgador de condensado" переводится как "очиститель от конденсата". Оба иностранных названия не менее точно отражают смысл назначения устройства, как и в русской интерпретации, однако термин steam trap уже в названии характеризует подход к проблеме, определяя, что основным назначением конденсатоотводчика является экономия пара. До сих пор можно услышать устаревший термин "конденсатный горшок", скорее отражающий внешний вид устройства и конструкцию, нежели функциональное назначение прибора.

Применение конденсатоотводчиков

Принципиально можно выделить два типа применения конденсатоотводчиков:

  • отвод конденсата от теплообменного оборудования (змеевики, калориферы, скоростные и емкостные подогреватели, стерилизаторы, пароспутники и пр.);
  • отвод конденсата от паропроводов (основные и вспомогательные паропроводы, паровые коллекторы, сепараторы пара).

При отводе конденсата от теплообменников, необходимо, чтобы пар, сконденсировавшись и таким образом, передав нагреваемой среде скрытую теплоту парообразования, был удален из теплообменника. Если не использовать конденсатоотводчик на выходе теплообменного аппарата, то часть пара, не успевшая сконденсироваться, выйдет из теплообменника в виде так называемого пролетного пара и может быть безвозвратно потеряна. Если пролетный пар не использовать, то процесс нагрева является крайне неэффективным, потому что потери пролетного пара порой могут достигать 20% и более. Таким образом, конденсатоотводчик способствует энергосбережению. Пролетный пар провоцирует гидроудары в конденсатных линиях. Работа конденсатоотводчика заключается в гидравлическом разделении паровой и конденсатной сторон.

Отвод конденсата из паропроводов необходим для эффективной и безопасной транспортировки пара. Конденсат в паропроводах с насыщенным паром неизбежно присутствует, он образуется за счет теплопотерь на стенках трубы. Наличие большого количества конденсата в паропроводе вызывает гидравлические удары, ограничивает пропускную способность паропровода и ускоряет коррозию и эрозию. Если не применять конденсатоотводчики, а дренировать конденсат другими способами (например, приоткрытым вентилем), то в большинстве случаев подобные способы снижают эффективность эксплуатации паропроводов, так как часть пара безвозвратно теряется, выходя вместе с конденсатом.

Конденсатоотводчик является чрезвычайно ответственным устройством, от качества его работы зависит не только эффективность работы пароконденсатной системы, но также и ее безопасная эксплуатация. Именно поэтому требования, предъявляемые к конденсатоотводчику, традиционно высоки. Часто конденсатоотводчики работают в крайне неблагоприятных для трубопроводной арматуры условиях, среди которых: переменный расход, высокий перепад давления, высокая температура, наличие загрязнений в рабочей среде, работа сразу с несколькоми средами (пар, конденсат, воздух). Для сохранения работоспособности в течение длительного времени, конденсатоотводчик должен обладать выдающимися характеристиками. Многообразие технических условий в тепловых процессах, требующих применения конденсатоотводчиков, обусловило необходимость использования нескольких типов конденсатоотводчиков в зависимости от конкретного приложения. Именно поэтому не существует универсального конденсатоотводчика, одинаково подходящего для всех процессов. На рисунке ниже приведены лишь некоторые модели из довольно большого многообразия конденсатоотводчиков, предлагаемых на рынке трубопроводной арматуры. Здесь приведены некоторые типовые заблуждения , касающиеся подхода к выбору конденсатоотводчиков.