Меню

Теория строения органических соединений кратко. Теория строения органических соединений А

Монтаж крыши и кровли

Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.


Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Алициклические Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2п +2 С п Н 2п С п Н 2п -6

Конец работы -

Эта тема принадлежит разделу:

Введение. Основы современной теории строения

Органических соединений.. введение.. биоорганическая химия изучает строение и свойства веществ участвующих в процессах жизнедеятельности в..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алкены Алкадиены Алкины
СпН2п СпН2п-2 СпН2п-2 Рис. 1. Классификация органических соединений по строению

Электронное строение атома углерода. Гибридизация.
Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитально

Сопряженные системы
Различают два типа сопряженных систем (и сопряжений). 1. p, p-сопряжение - электроны делокализованы

ТЕМА 3. Химическое строение и изомерия органических соединений
Изомерия органических соединений. Если два или больше индивидуальных веществ имеют одинаковый количественный состав (молекулярную формулу), но отличаются друг от друга пос

Конформации органических молекул
Поворот вокруг s-связи С–С совершается сравнительно легко, углеводородная цепь может принимать разные формы. Конформационные формы легко переходят друг в друга и поэтому не являются различными соед

Конформации циклических соединений.
Циклопентан. У пятичленного цикла в плоской форме валентные углы равны 108°, что близко к нормальному значению для sр3-гибридного атома. Поэтому в плоском циклопентане, в отличие от цикл

Конфигурационные изомеры
Это стереоизомеры с различным расположением вокруг определенных атомов других атомов, радикалов или функциональных групп в пространстве относительно друг друга. Различают понятия диастере

Общая характеристика реакций органических соединений.
Кислотность и основность органических соединений. Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и тео

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).
Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии ки

Общая характеристика реакций органических соединений
Большинство органических реакций включает несколько по­следовательных (элементарных) стадий. Детальное описание со­вокупности этих стадий называется механизмом. Механизм реакции -

Селективность реакций
Во многих случаях в органическом соединении присутствуют несколько неравноценных реакционных центров. В зависимости от строения продуктов реакции говорят о региоселективности, хемоселективности и с

Радикальные реакции.
Хлор реагирует с предельными углеводородами только под влия­нием света, нагревания или в присутствии катализаторов, при­чем последовательно замещаются хлором все атомы водорода: СН4

Реакции электрофильного присоединения
Ненасыщенные углеводороды - алкены, циклоалкены, алкадиены и алкины - проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. Более важной in vivo является двойн

И элиминирования у насыщенного атома углерода
Реакции нуклеофильного замещения у sp3- гибридизованного атома углерода: гетеро­литические реакции, обусловленные поляризацией s- связи углерод - гетероатом (галогенопро

Реакции нуклеофильного замещения с участием sр2-гибридизованного атома углерода.
Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (реакция этерификации). В карбоксильной группе кислоты реализуется р,p- сопряжение, поскольку пара эле

Реакции нуклеофильного замещения в ряду карбоновых кислот.
Только с чисто формальных позиций можно рассматривать кар­боксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью и

Органических соединений.
Окислительно-восстановительные реакции (ОВР) занимают большое место в органической химии. Важнейшее значение имеют ОВР для процессов жизнедеятельности. С их помощью организм удовлет

Участвующие в процессах жизнедеятельности
Подавляющее большинство органических веществ, участвующих в процессах метаболизма, представляют собой соединения с двумя и более функциональными группами. Такие соединения принято классифицировать

Двухатомные фенолы
Двухатомные фенолы – пирокатехин, резорцин, гидрохинон – входят в состав многих природных соединений. Все они дают характерное окрашивание с хлоридом железа. Пирокатехин (о-дигидроксибензол, катехо

Дикарбоновые и ненасыщенные карбоновые кислоты.
Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две - двухосновными т. д. Дикарбоновые кислоты – белые кристаллические вещества, обладающи

Аминоспирты
2-Аминоэтанол (этаноламин, коламин) – структурный компонент сложных липидов, образуется путем размыкания напряженных трехчленных циклов этиленоксида и этиленимина аммиаком или водой соответственно

Гидрокси- и аминокислоты.
Гидроксикислоты содержат в молекуле одновременно гидроксильную и карбоксильную группы, аминокислоты - карбоксильную и аминогруппу. В зависимости от расположения гидрокси- или аминогруппы п

Оксокислоты
Оксокислоты - соединения, содержащие одновременно карбоксильную и альдегидную (или кетонную) группы. В соответствии с этим различают альдегидокислоты и кетокислоты. Простейшей альдегидокис

Гетерофункциональные производные бензола как лекарственные средства.
Последние десятилетия характеризуются появлением множества новых лекарственных средств и препаратов. Вместе с тем большое значение продолжают сохранять некоторые группы известных ранее лекарственны

ТЕМА 10. Биологически важные гетероциклические соединения
Гетероциклические соединения (гетероциклы) – соединения, включающие в цикл один или несколько атомов, отличных от углерода (гетероатомов). Гетероциклические системы лежат в основе с

ТЕМА 11. Аминокислоты, пептиды, белки
Строение и свойства аминокислот и пептидов. Аминокислоты - соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы. Природные a-амин

Пространственное строение полипептидов и белков
Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны более высокие уровни организации, которые принято называть вторичной, третичной и четвертичной структурами.

ТЕМА 12. Углеводы: моно, ди- и полисахариды
Углеводы разделяют на простые (моносахариды) и сложные (полисахариды). Моносахариды (монозы). Это гетерополифункциональные соединения, содержащие карбонильную и несколько г

ТЕМА 13. Нуклеотиды и нуклеиновые кислоты
Нуклеиновые кислоты (полинуклеотиды) – это биополимеры, мономерными звеньями которых являются нуклеотиды. Нуклеотид представляет собой трехкомпонентную структуру, состоящую

Нуклеозиды.
Гетероциклические основания образуют N-гликозиды с D-рибозой или 2-дезокси-D-рибозой. В химиии нуклеиновых кислот такие N-гликозиды называют нуклеозидами. D-рибоза и 2-дезокси- D -рибоза в состав п

Нуклеотиды.
Нуклеотидами называются фосфаты нуклеозидов. Фосфорная кислота обычно этерифицирует спиртовый гидроксил при С-5" или С-3" в остатке рибозы или дезоксирибозы (атомы цикла азотистых оснований нумерую

Стероиды
Стероиды широко распространены в природе, выполняют в организме разнообразные функции. К настоящему времени известно около 20 000 стероидов; более 100 из них применяется в медицине. Стероиды имеют

Стероидные гормоны
Гормоны – биологически активные вещества, образующиеся в результате деятельности желез внутренней секреции и принимающие участие в регуляции обмена веществ и физиологических функций в организме.

Стерины
Как правило, клетки очень богаты стеринами. В зависимости от источника выделения различают зоостерины (из животных), фитостерины (из растений), микостерины (из грибов) и стерины микроорганизмов. В

Желчные кислоты
В печени стерины, в частности холестерин, превращаются в желчные кислоты. Алифатическая боковая цепь у С17 в желчных кислотах, производных углеводорода холана, состоит из 5 атомов углеро

Терпены и терпеноиды
Под этим названием объединяют ряд углеводородов и их кислородсодержащих производных - спиртов, альдегидов и кетонов, углеродный скелет которых построен из двух, трех и более звеньев изопрена. Сами

Витамины
Витаминами обычно называют органические вещества, присутствие которых в небольшом количестве в пище человека и животных необходимо для их нормальной жизнедеятельности. Это классическое опр

Житрорастворимые витамины
Витамин А относится к сесквитерпенам, содержится в масле, молоке, яичном желтке, рыбьем жире; свиное сало и маргарин его не содержат. Это витамин роста; недостаток его в пище вызыв

Водорастворимые витамины
В конце прошлого века тысячи моряков на японских судах страдали, а многие из них умирали мучительной смертью от таинственной болезни «бери-бери». Одной из загадок бери-бери было то, что моряки на с

Основой создания теории химического строения органических соединений А.М. Бутлеровым послужило атомно-молекулярное учение (работы А.Авагадро и С.Канниццаро). Будет неправильным предполагать, что до ее создания в мире ничего не было известно об органических веществах и не предпринимались попытки обоснования строения органических соединений. К 1861 году (год создания А.М. Бутлеровым теории химического строения органических соединений) число известных органических соединений достигало сотен тысяч, а выделение органической химии как самостоятельной науки произошло еще в 1807 году (Й. Берцелиус).

Предпосылки теории строения органических соединений

Широкое изучение органических соединений началось в XVIII веке с работ А.Лавуазье, который показал, что вещества, получаемые из живых организмов, состоят из нескольких элементов – углерода, водорода, кислорода, азота, серы и фосфора. Огромное значение имело введение терминов «радикал» и «изомерия», а также формирование теории радикалов (Л. Гитон де Морво, А. Лавуазье, Ю. Либих, Ж. Дюма, Й. Берцелиус), успехи в синтезе органических соединений (мочевина, анилин, уксусная кислота, жиры, сахароподобные вещества и др.).

Термин «химическое строение», а также основы классической теории химического строения были впервые обнародованы А.М. Бутлеровым 19 сентября 1861 года в его докладе на Съезде немецких естествоиспытателей и врачей в Шпейере.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы, образующие молекулу органического вещества связаны между собой в определенном порядке, причем на связь с друг другом затрачивается по одной или несколько валентностей от каждого атома. Свободных валентностей нет.

Последовательность соединения атомов Бутлеров назвал «химическим строением». Графически связи между атомами обозначаются чертой или точкой (рис. 1).

Рис. 1. Химическое строение молекулы метана: А – структурная формула, Б – электронная формула

2. Свойства органических соединений зависят от химического строения молекул, т.е. свойства органических соединений зависят от порядка соединения атомов в молекуле. Изучив свойства можно изобразить вещество.

Рассмотрим пример: вещество имеют брутто-формулу C 2 H 6 O. Известно, что при взаимодействии этого вещества с натрием выделяется водород, а при действии на него кислоты образуется вода.

C 2 H 6 O + Na = C 2 H 5 ONa + H 2

C 2 H 6 O + HCl = C 2 H 5 Cl + H 2 O

Данному веществу может соответствовать две структурные формулы:

CH 3 -O-CH 3 – ацетон (диметилкетон) и CH 3 -CH 2 -OH – этиловый спирт (этанол),

исходя из химических свойств, характерных для этого вещества делаем вывод, что это этанол.

Изомеры – это вещества, обладающие одинаковым качественным и количественным составом, но различным химическим строением. Выделяют несколько типов изомерии: структурная (линейная, разветвленная, углеродного скелета), геометрическая (цис- и транс- изомерия, характерная для соединений с кратной двойной связью (рис. 2)), оптическая (зеркальная), стерео (пространственная, характерна для веществ, способных по разному располагаться в пространстве (рис. 3)).

Рис. 2. Пример геометрической изомерии

3. На химические свойства органических соединений оказывают влияние и другие атомы, присутствующие в молекуле. Такие группы атомов получили название функциональных групп, за счет того, что их наличие в молекуле вещества придает ему особые химические свойства. Например: -OH (гидроксо-группа), -SH (тио-группа), -CO (карбонильная группа), -COOH (карбоксильная группа). Причем химические свойства органического вещества в меньшей степени зависят от углеводородного скелета, чем от функциональной группы. Именно функциональные группы обеспечивают многообразие органических соединений, за счет чего их классифицируют (спирты, альдегиды, карбоновые кислоты и т.д. К числу функциональных групп иногда относят и углерод-углеродные связи (кратные двойные и тройные). Если в молекуле органического вещества несколько одинаковых функциональных групп, то его называют гомополифунцкиональным (CH 2 (OH)-CH(OH)-CH 2 (OH) – глицерин), если несколько, но разных – гетерополифункциональным (NH 2 -CH(R)-COOH – аминокислоты).


Рис.3. Пример стерео изомерии: а – циклогексан, форма «кресла», б – циклогексан, форма «ванна»

4. Валентность углерода в органических соединениях всегда равна четырем.

К первой половине XIX века в органической химии был накоплен громадный фактический материал, дальнейшее изучение которого тормозилось отсутствием какой-либо систематизирующей основы. Начиная с 20-х годов XIX века стали появляться сменяющие друг друга теории, претендующие на обобщенное описание строения органических соединений. Одной из них была теория типов, разработанная в х годах французским ученым Ш. Жераром. Согласно этой теории, все органические соединения рассматривались как производные простейших неорганических веществ, принятых за типы.Ш. Жераром


Незадолго до появления теории строения А. М. Бутлерова немецким химиком Ф.А. Кекуле (1857) была разработана применительно к органическим соединениям теория валентности, установившая такие факты, как четырехвалентность атома углерода и его способность образовывать углеродные цепи за счет соединения с атомами углерода.А. М. БутлероваФ.А. Кекуле


Теоретические разработки добутлеровского периода внесли определенный вклад в познание строения органических соединений. Но ни одна из ранних теорий не была всеобщей. И лишь А.М. Бутлерову удалось создать такую логически завершенную теорию строения, которая и по сей день служит научной основой органической химии. Теория строения А.М. Бутлерова базируется на материалистическом подходе к реальной молекуле и исходит из возможности познания ее строения экспериментальным путем. А.М. Бутлеров при установлении строения веществ придавал основополагающее значение химическим реакциям. Теория строения А.М. Бутлерова не только объясняла уже известные факты, ее научное значение заключалось в прогнозировании существования новых органических соединений.А.М. Бутлерову А.М. Бутлерова А.М. БутлеровА.М. Бутлерова




Изомеры - это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а поэтому обладают разными свойствами. Подлинное объяснение изомерия получила лишь во второй половине 19 в на основе теории химического строения А.М. Бутлерова (структурная изомерия) и стереохимического учения Я. Г. Вант-Гоффа (пространственная изомерия).Я. Г. Вант-Гоффа


ФормулаНазвание Число изомеров CH 4 метан1 C4H6C4H6 этан1 C3H8C3H8 пропан1 C 4 H 10 бутан2 C 5 H 12 пентан3 C 6 H 14 гексан5 C 7 H 16 гептан9 C 8 H 18 октан18 C 9 H 20 нонан35 C 10 H 22 декан75 C 11 H 24 ундекан159 C 12 H 26 додекан355 C 13 H 28 тридекан802 C 14 H 30 тетрадекан1 858 C 15 H 32 пентадекан4 347 C 20 H 42 эйкозан C 25 H 52 пентакозан C 30 H 62 триаконтан C 40 H 82 тетраконтан


Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов). Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.


Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры. Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.







Открыт новый способ получения оптических изомеров органических молекул Когда Алиса оказалась в собственной, но «зазеркальной» комнате, то удивилась: комната вроде похожа, но всё же совсем другая. Точно так же различаются и зеркальные изомеры химических молекул: внешне похожи, но ведут себя по-разному. Важнейшей областью органической химии является разделение и синтез этих зеркальных вариантов. (Иллюстрация Джона Тенниела к книге Льюиса Кэрролла «Алиса в Зазеркалье»)



Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.


Сейчас известно уже не менее 130 реакций органического синтеза, в которых получаются более или менее чистые хиральные изомеры. Если сам катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получится оптически активный продукт. Это правило было выведено еще в начале XX века и остается базовым и на сегодняшний день. Принцип выборочного действия катализатора по отношению к оптическим изомерам похож на рукопожатие: катализатору «удобно» связываться только с одним из хиральных изомеров, поэтому и катализируется предпочтительно только одна из реакций. Кстати, термин «хиральный» произошел от греческого chéir рука.


Александр Михайлович Бутлеров родился 3 (15) сентября 1828 года в городе Чистополь Казанской губернии в семье помещика, офицера в отставке. Первое образование получил в частном пансионе, затем учился в гимназии и Казанском императорском университете. С 1849-го преподавал, в 1857-м стал ординарным профессором химии в том же университете. Дважды был его ректором. В 1851-м защитил магистерскую диссертацию «Об окислении органических соединений», а в 1854-м в Московском университете - докторскую диссертацию «Об эфирных маслах». С 1868 года был ординарным профессором химии Петербургского университета, с 1874-го - ординарным академиком Петербургской академии наук. Кроме химии Бутлеров уделял внимание практическим вопросам сельского хозяйства, садоводству, пчеловодству, под его руководством началось разведение чая на Кавказе. Умер в деревне Бутлеровка Казанской губернии 5 (17) августа 1886 года.

До Бутлерова предпринималось немалое количество попыток создать учение о химическом строении органических соединений. К этому вопросу не раз обращались самые именитые химики того времени, работы которых частично были использованы русским ученым для своей теории строения. Например, немецкий химик Август Кекуле пришел к выводу, что углерод может образовывать четыре связи с другими атомами. Более того, он считал, что для одного и того же соединения может существовать несколько формул, однако при этом всегда добавлял, что в зависимости от химического превращения эта формула может быть разной. Кекуле полагал, что формулы не отражают того, в какой последовательности соединены атомы в молекуле. Другой видный немецкий ученый, Адольф Кольбе, вообще считал принципиально невозможным выяснение химического строения молекул.

Свои основные идеи о строении органических соединений Бутлеров впервые высказал в 1861 году в докладе «О химическом строении вещества», который представил на суд участников Съезда немецких естествоиспытателей и врачей в Шпейере. В свою теорию он включил идеи Кекуле о валентности (количестве связей для конкретного атома) и шотландского химика Арчибальда Купера о том, что атомы углерода могут образовывать цепочки. Принципиальным отличием теории Бутлерова от других было положение о химическом (а не механическом) строении молекул - способе, с помощью которого атомы связывались друг с другом, образовывая молекулу. При этом каждый атом устанавливал связь в соответствии с принадлежащей конкретно ему «химической силой». В своей теории ученый проводил четкое различие между свободным атомом и атомом, вступившим в соединение с другим (он переходит в новую форму, а в результате взаимного влияния соединенные атомы, в зависимости от структурного окружения, имеют различные химические функции). Русский химик был убежден, что формулы не просто схематично изображают молекулы, но и отражают их реальное строение. Более того, каждая молекула имеет определенную структуру, которая меняется только в ходе химических превращений. Из положений теории следовало (впоследствии было подтверждено экспериментально), что химические свойства органического соединения определяются его строением. Это утверждение особенно важно, так как позволило объяснять и предсказывать химические превращения веществ. Существует и обратная зависимость: по структурной формуле можно судить о химических и физических свойствах вещества. Кроме этого, ученый обратил внимание на то, что реакционная способность соединений объясняется энергией, с которой связываются атомы.

С помощью созданной теории Бутлеров смог объяснить изомерию. Изомерами называют соединения, количество и «качество» атомов в которых одинаково, но при этом они имеют различные химические свойства, а значит, и разное строение. Теория позволила доступно объяснить известные случаи изомерии. Бутлеров верил, что можно определить и пространственное расположение атомов в молекуле. Его предсказания были позже подтверждены, что дало толчок развитию нового раздела органической химии - стереохимии. Следует отметить, что ученый первым открыл и объяснил явление динамической изомерии. Ее смысл заключается в том, что два или несколько изомеров в определенных условиях могут легко переходить друг в друга. Если говорить в общем, то именно изомерия стала серьезным испытанием для теории химического строения и была ею блестяще объяснена.

Сформулированные Бутлеровым неопровержимые положения очень скоро принесли теории всеобщее признание. Верность выдвинутых идей была подтверждена экспериментами ученого и его последователей. В их процессе доказали гипотезу об изомерии: Бутлеров синтезировал один из четырех предсказанных теорией бутиловых спиртов, расшифровал его строение. В соответствии с правилами изомерии, которые напрямую вытекали из теории, также была высказана возможность существования четырех валериановых кислот. Позже они были получены.

Это лишь единичные факты в цепочке открытий: химическая теория строения органических соединений обладала потрясающей предсказательной способностью.

За относительно короткий период было открыто, синтезировано и изучено большое количество новых органических веществ и их изомеров. В итоге теория Бутлерова дала толчок бурному развитию химической науки, в том числе синтетической органической химии. Так, многочисленные синтезы Бутлерова являются главными продуктами целых отраслей промышленности.

Теория химического строения продолжила развиваться, что принесло органической химии много революционных по тем временам идей. К примеру, Кекуле выдвинул предположение о циклическом строении бензола и перемещении его двойных связей в молекуле, об особых свойствах соединений с сопряженными связями и многом другом. Более того, упомянутая теория сделала органическую химию более наглядной - появилась возможность рисовать формулы молекул.

А это, в свою очередь, положило начало классификации органических соединений. Именно использование структурных формул помогало определить пути синтеза новых веществ, установить строение сложных соединений, то есть обусловило активное развитие химической науки и ее отраслей. Например, Бутлеров стал проводить серьезные исследования процесса полимеризации. В России это начинание было продолжено его учениками, что в итоге позволило открыть промышленный способ получения синтетического каучука.

Созданная А.М. Бутлеровым в 60-х годах XIX века теория химического строения органических соединений внесла необходимую ясность в причины многообразия органических соединений, вскрыла взаимосвязь между строением и свойствами этих веществ, позволила объяснить свойства уже известных и предсказать свойства ещё не открытых органических соединений.

Открытия в области органической химии (четырёхвалентность углерода, способность образования длинных цепочек) позволили Бутлерову в 1861 году сформулировать основные поколения теории:

1) Атомы в молекулах соединяются согласно их валентности (углерод-IV, кислород-II, водород-I), последовательность соединения атомов отражается структурными формулами.

2) Свойства веществ зависят не только от химического состава, но и от порядка соединения атомов в молекуле (химическое строение). Существуют изомеры , то есть вещества, имеющие одинаковый количественный и качественный состав, но разное строение, и, следовательно, разные свойства.

C 2 H 6 O: CH 3 CH 2 OH – этиловый спирт и CH 3 OCH 3 – диметиловый эфир

C 3 H 6 – пропен и циклопропан - CH 2 =CH−CH 3

3) Атомы взаимно влияют друг на друга, это следствие различной электроотрицательности атомов, образующих молекулы (O>N>C>H), и эти элементы оказывают различное влияние на смещение общих электронных пар.

4) По строению молекулы органического вещества можно предсказать его свойства, а по свойствам – определить строение.

Дальнейшее развитие ТСОС получила после установления строения атома, принятия концепции о типах химических связей, о видах гибридизации, открытие явления пространственной изомерии (стереохимия).


Билет №7 (2)

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии хим. Реакции- восстановления на катоде и окисления на аноде.

Катод(-) отдает электроны катионам, а анод(+) принимает электроны от анионов.

Электролиз расплава NaCl

NaCl-―> Na + +Cl -

K(-): Na + +1e-―>Na 0 | 2 проц. восстановления

A(+) :2Cl-2e-―>Cl 2 0 | 1 проц. окисления

2Na + +2Cl - -―>2Na+Cl 2

Электролиз водного раствора NaCl

В электролизе раствора NaC| в воде участвуют ионы Na + и Cl - , а также молекулы воды. При прохождении тока катионы Na + движутся к катоду, а анионы Cl - - к аноду. Но на катоде вместо ионов Na восстанавливаться молекулы воды:

2H 2 O + 2e-―> H 2 +2OH -

а на аноде окисляются хлорид-ионы:

2Cl - -2e-―>Cl 2

В итоге на катоде-водород, на аноде-хлор, а в растворе накапливается NaOH

В ионной форме: 2H 2 O+2e-―>H 2 +2OH-

2Cl - -2e-―>Cl 2

электролиз

2H 2 O+2Cl - -―>H 2 +Cl 2 +2OH -

электролиз

В молекулярной форме: 2H 2 O+2NaCl-―> 2NaOH+H 2 +Cl 2

Применение электролиза:

1)Защита металлов от коррозии

2)Получение активных металлов (натрия, калия, щелочно-земельных и др.)

3)Очистка некоторых металлов от примесей (электрическое рафинирование)

Билет №8 (1)


Похожая информация:

  1. A) Теория познания - наука, изучающая формы, способы и приемы возникновения и закономерности развития знания, отношение его к действительности, критерии его истинности.