Меню

Где используют уравнения с двумя переменными. Уравнения с двумя переменными

Устройство крыши

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете , что найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

Совет 2: Как решать линейное уравнение с двумя переменными

Уравнение , в общем виде записанное ах+bу+с=0, называется линейным уравнением с двумя переменными . Такое уравнение само по себе содержит бесконечное множество решений, поэтому в задачах оно всегда чем-либо дополняется – еще одним уравнением или ограничивающими условиями. В зависимости от условий, предоставленных задачей, решать линейное уравнение с двумя переменными следует разными способами.

Вам понадобится

Инструкция

Если дана система из двух линейных уравнений, решайте ее следующим образом. Выберите одно из уравнений, в котором коэффициенты перед переменными поменьше и выразите одну из переменных, например, х. Затем подставьте это значение, содержащее у, во второе уравнение. В полученном уравнении будет лишь одна переменная у, перенесите все части с у в левую часть, а свободные – в правую. Найдите у и подставьте в любое из первоначальных уравнений, найдите х.

Решить систему из двух уравнений можно и другим способом. Умножьте одно из уравнений на число, чтобы коэффициент перед одной из переменных, например, перед х, был одинаков в обоих уравнениях. Затем вычтите одно из уравнений из другого (если правая часть не равна 0, не забудьте вычесть аналогично и правые части). Вы увидите, что переменная х исчезла, и осталась только одна переменная у. Решите полученное уравнение, и подставьте найденное значение у в любое из первоначальных равенств. Найдите х.

Третий способ решения системы двух линейных уравнений – графический. Начертите систему координат и изобразите графики двух прямых, уравнения которых указаны в вашей системе. Для этого подставляйте любые два значения х в уравнение и находите соответствующие у – это будут координаты точек, принадлежащих прямой. Удобнее всего находить пересечение с осями координат – достаточно подставить значения х=0 и у=0. Координаты точки пересечения этих двух линий и будут задачи.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Решение системы уравнений сложно и увлекательно. Чем сложнее система, тем интереснее ее решать. Чаще всего в математике средней школы встречаются системы уравнений с двумя неизвестными, но в высшей математике переменных может быть и больше. Решать системы можно несколькими методами.

Инструкция

Самый распространенный метод решения системы уравнений - это подстановка. Для этого необходимо выразить одну переменную через другую и подставить ее во второе уравнение системы, таким образом приведя уравнение к одной переменной. Например, дана уравнений:2х-3у-1=0;х+у-3=0.

Из второго выражения удобно выразить одну из переменных, перенеся все остальное в правую часть выражения, не забыв при этом сменить знак коэффициента:х=3-у.

Раскрываем скобки: 6-2у-3у-1=0;-5у+5=0;у=1.Полученное значение у подставляем в выражение:х=3-у;х=3-1;х=2.

В первом выражении все члены 2, можно вынести 2 за скобку распределительному свойству умножения:2*(2х-у-3)=0. Теперь обе части выражения можно сократить на это число, а затем выразить у, так как коэффициент по модулю при нем равен единице:-у=3-2х или у=2х-3.

Так же, как и в первом случае, подставляем данное выражение во второе уравнение и получаем:3х+2*(2х-3)-8=0;3х+4х-6-8=0;7х-14=0;7х=14;х=2.Подставляем полученное значение в выражение: у=2х-3;у=4-3=1.

Мы видим, что коэффициент при у одинаков по значению, но различен по знаку, следовательно, если мы сложим данные уравнения, то вовсе избавимся от у:4х+3х-2у+2у-6-8=0;7х-14=0;х=2.Подставляем значение х в любое из двух уравнений системы и получаем у=1.

Видео по теме

Биквадратное уравнение представляет собой уравнение четвертой степени, общий вид которого представляется выражением ax^4 + bx^2 + c = 0. Его решение основано на применении метода подстановки неизвестных. В данном случае х^2 заменяется другой переменной. Таким образом, в итоге получается обычное квадратное уравнение , которое и требуется решить.

Инструкция

Решите квадратное уравнение , получившееся в результате замены. Для этого сначала посчитаем значение в соответствии с формулой: D = b^2 ? 4ac. При этом переменные a, b, c являются коэффициентами нашего уравнения.

Найдите корни биквадратного уравнения. Для этого возьмите корень квадратный из полученных решений . Если решение было одно, то будет два – положительное и отрицательное значение корня квадратного. Если решений было два, у биквадратного уравнения будет четыре корня.

Видео по теме

Одним из классических способов решения систем линейных уравнений является метод Гаусса. Он заключается в последовательном исключении переменных, когда система уравнений с помощью простых преобразований переводится в ступенчатую систему, из которой последовательно находятся все переменные, начиная с последних.

Инструкция

Сначала приведите систему уравнений в такой вид, когда все неизвестные будут стоять в строго определенном порядке. Например, все неизвестные Х будут стоять первыми в каждой строке, все Y – после X, все Z - после Y и так далее. В правой части каждого уравнения неизвестных быть не должно. Мысленно определите коэффициенты, стоящие перед каждой неизвестной, а также коэффициенты в правой части каждого уравнения.

Линейное уравнение с двумя переменными - любое уравнение, которое имеет следующий вид: a*x + b*y =с. Здесь x и y есть две переменные, a,b,c - некоторые числа.

Ниже представлены несколько примеров линейных уравнений.

1. 10*x + 25*y = 150;

Как и уравнения с одним неизвестным, линейное уравнение с двумя переменными (неизвестными) тоже имеет решение. Например, линейное уравнение x-y=5, при x=8 и y=3 превращается в верное тождество 8-3=5. В таком случае говорят, что пара чисел x=8 и y=3 является решением линейного уравнения x-y=5. Еще можно говорить, что пара чисел x=8 и y=3 удовлетворяет линейному уравнению x-y=5.

Решение линейного уравнения

Таким образом, решением линейного уравнения a*x + b*y = с, называется, любая пара чисел (x,y) которая удовлетворяет этому уравнению, то есть обращает уравнение с переменными x и y в верное числовое равенство. Обратите внимание, как здесь записана пара чисел х и у. Такая запись короче и удобнее. Следует только помнить, что на первом месте в такой записи стоит значение переменной х, а на втором - значение переменной у.

Обратите внимание на то, что числа x=11 и y=8, x=205 и y=200 x= 4.5 и y= -0.5 тоже удовлетворяют линейному уравнению х-у=5, а следовательно являются решениями этого линейного уравнения.

Решение линейного уравнения с двумя неизвестными не является единственным. Каждое линейное уравнение с двумя неизвестными имеет бесконечно много различных решений. То есть существует бесконечно много различных двух чисел х и у, которые обращают линейное уравнение в верное тождество.

Если несколько уравнений с двумя переменными имеют одинаковые решения, то такие уравнения называются равносильными уравнениями. Следует отметить, что если уравнения с двумя неизвестными не имеют решений, то их тоже считают равносильными.

Основные свойства линейных уравнений с двумя неизвестными

1. Любое из слагаемых в уравнении можно перенести из одной части в другую, при этом необходимо изменить его знак на противоположный. Полученное уравнение будет равносильно исходному.

2. Обе части уравнения можно разделить на любое число, которое не равно нулю. В результате получим уравнение равносильное исходному.

Решение уравнений в целых числах является одной из древнейших математических задач. Уже в начале 2 тысячелетия до н. э. Вавилоняне умели решать системы таких уравнений с двумя переменными. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником для нас является «Арифметика» Диофанта, содержащая различные типы уравнений. В ней Диофант (по его имени и название уравнений – диофантовы уравнения) предвосхищает ряд методов исследования уравнений 2-ой и 3-ой степеней, развившихся только в 19 веке.

Простейшие диофантовы уравнения ах + ву = 1(уравнение с двумя переменными, первой степени) х2 + у2 = z2 (уравнение с тремя переменными, второй степени)

Наиболее полно изучены алгебраические уравнения, их решение было одной из важнейших задач алгебры в 16-17 вв.

К началу 19 века трудами П. Ферма, Л. Эйлера, К. Гаусса было исследовано диофантово уравнение вида: ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные.

Это уравнение 2-ой степени с двумя неизвестными.

К. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов уравнений с двумя переменными (диофантовых уравнений). Существует большое число конкретных диофантовых уравнений, решаемых элементарными способами. /p>

Теоретический материал.

В этой части работы будут описаны основные математические понятия, даны определения терминов, сформулирована теорема о разложении с использованием метода неопределенных коэффициентов, которые были изучены и рассмотрены при решении уравнений с двумя переменными.

Определение 1: Уравнение вида ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные называется уравнением второй степени с двумя переменными.

В школьном курсе математики изучается квадратное уравнение ах2+вх +с=0 , где а,в,с числа х переменная, с одной переменной. Существует много способов решения такого уравнения:

1. Нахождение корней, используя дискриминант;

2. Нахождение корней для четного коэффициента в (по Д1=);

3. Нахождение корней по теореме Виета;

4. Нахождение корней с помощью выделения полного квадрата двучлена.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Определение 2: Корень уравнения – это число, которое при подстановке в уравнение образует верное равенство.

Определение 3: Решение уравнения с двумя переменными называется пара чисел (х,у) при подстановки которых в уравнение, оно превращается в верное равенство.

Процесс разыскивания решений уравнения очень часто заключается обычно в замене уравнения равносильным уравнением, но более простым при решении. Такие уравнения называются равносильными.

Определение 4: Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого уравнения, и наоборот, причем оба уравнения рассматриваются в одной и той же области.

Для решения уравнений с двумя переменными используют теорему о разложении уравнения на сумму полных квадратов (методом неопределенных коэффициентов).

Для уравнения второго порядка ах2 + вху + су2 + dx + ey + f = 0 (1) имеет место разложение а(х +ру +q)2 + r(y+s)2 +h (2)

Сформулируем условия, при которых имеет место разложение (2) для уравнения (1) двух переменных.

Теорема: Если коэффициенты а,в,с уравнения (1) удовлетворяют условиям а0 и 4ав – с20, то разложение (2) определяется единственным способом.

Другими словами уравнение (1) с двумя переменными можно с помощью метода неопределенных коэффициентов привести к виду (2), если выполнены условия теоремы.

Рассмотрим на примере, как реализуется метод неопределенных коэффициентов.

СПОСОБ №1. Решить уравнение методом неопределенных коэффициентов

2 х2 + у2 + 2ху + 2х +1= 0.

1. Проверим выполнение условия теоремы, а=2, в=1, с=2, значит, а=2,4ав – с2= 4∙2∙1- 22= 40.

2. Условия теоремы выполнены, можно разложить по формуле (2).

3. 2 х2 + у2 + 2ху + 2х +1= 2(х + py + q)2 + r(y +s)2 +h, исходя из условий теоремы обе части тождества равносильны. Упростим правую часть тождества.

4. 2(х + py + q)2 + r(y +s)2 +h =

2(х2+ p2y2 + q2 + 2pxy + 2pqy + 2qx) + r(y2 + 2sy + s2) + h =

2х2+ 2p2y2 + 2q2 + 4pxy + 4pqy + 4qx + ry2 + 2rsy + rs2 + h =

X2(2) + y2(2p2 + r) + xy(4p) + x(4q) + y(4pq + 2rs) + (2q2 + rs2 + h).

5. Приравниваем коэффициенты при одинаковых переменных с их степенями.

х2 2 = 2 у21 = 2p2 + r) ху2 = 4p х2 = 4q у0 = 4pq + 2rs х01 = 2q2 + rs2 + h

6. Получим систему уравнений, решим ее и найдем значения коэффициентов.

7. Подставим коэффициенты в (2), тогда уравнение примет вид

2 х2 + у2 + 2ху + 2х +1= 2(х + 0,5y + 0,5)2 + 0,5(y -1)2 +0

Таким образом, исходное уравнение равносильно уравнению

2(х + 0,5y + 0,5)2 + 0,5(y -1)2 = 0 (3), это уравнение равносильно системе двух линейных уравнений.

Ответ: (-1; 1).

Если обратить внимание на вид разложения (3), то можно заметить, что оно по форме идентично выделению полного квадрата из квадратного уравнения с одной переменной: ах2 + вх + с = а(х +)2 +.

Применим этот прием при решении уравнения с двумя переменными. Решим с помощью выделения полного квадрата уже решенное с использованием теоремы квадратное уравнение с двумя переменными.

СПОСОБ №2: Решить уравнение 2 х2 + у2 + 2ху + 2х +1= 0.

Решение: 1. Представим 2х2 в виде суммы двух слагаемых х2 + х2 + у2 + 2ху + 2х +1= 0.

2. Сгруппируем слагаемые таким образом, чтобы можно было свернуть по формуле полного квадрата.

(х2 + у2 + 2ху) + (х2 + 2х +1)= 0.

3. Выделим полные квадраты из выражений в скобках.

(х + у)2 + (х + 1)2 = 0.

4. Данное уравнение равносильно системе линейных уравнений.

Ответ: (-1;1).

Если сравнить результаты, то видно, что уравнение, решенное способом №1 с использованием теоремы и методом неопределенных коэффициентов и уравнение, решенное способом №2, с помощью выделения полного квадрата имеют одинаковые корни.

Вывод: Квадратное уравнение с двумя переменными можно разлагать на сумму квадратов двумя способами:

➢ Первый способ – это метод неопределенных коэффициентов, в основе которого лежит теорема и разложение (2).

➢ Второй способ – с помощью тождественных преобразований, позволяющих выделить последовательно полные квадраты.

Конечно же, при решении задач второй способ является предпочтительнее, т. к. не требует запоминания разложения (2) и условия.

Этот метод можно применять и для квадратных уравнений с тремя переменными. Выделение полного квадрата в таких уравнениях более трудоемко. Такого вида преобразованиями я буду заниматься в следующем году.

Интересно заметить, что функцию, имеющую вид: f(х,у)= ах2 + вху + су2 + dx + ey + f, называют квадратичной функцией двух переменных. Квадратичным функциям принадлежит важная роль в различных разделах математики:

В математическом программировании (квадратичное программирование)

В линейной алгебре и геометрии (квадратичные формы)

В теории дифференциальных уравнений (приведение линейного уравнения второго порядка к каноническому виду).

При решении этих различных задач, приходится, по сути, применять процедуру выделения полного квадрата из квадратного уравнения (одной, двух и более переменных).

Линии, уравнения которых, описываются квадратным уравнением двух переменных, называются кривыми второго порядка.

Это окружность, эллипс, гипербола.

При построении графиков этих кривых так же используется метод последовательного выделения полного квадрата.

Рассмотрим, как работает метод последовательного выделения полного квадрата на конкретных примерах.

Практическая часть.

Решить уравнения, методом последовательного выделения полного квадрата.

1. 2х2 + у2 + 2ху + 2х + 1 = 0; х2 + х2 + у2 + 2ху + 2х + 1 = 0;

(х +1)2 + (х + у)2 = 0;

Ответ:(-1;1).

2. х2 + 5у2 + 2ху + 4у + 1 = 0; х2 + 4у2 + у2 + 2ху + 4у + 1 = 0;

(х + у)2 + (2у + 1)2 = 0;

Ответ:(0,5; - 0,5).

3. 3х2 + 4у2 - 6ху - 2у + 1 = 0;

3х2 + 3у2 + у2 – 6ху – 2у +1 = 0;

3х2 +3у2 – 6ху + у2 –2у +1 = 0;

3(х2 - 2ху +у2) + у2 - 2у + 1 = 0;

3(х2 - 2ху + у2)+(у2 - 2у + 1)=0;

3(х-у)2 + (у-1)2 = 0;

Ответ:(-1;1).

Решить уравнения:

1. 2х2 + 3у2 – 4ху + 6у +9 =0

(привести к виду: 2(х-у)2 + (у +3)2 = 0)

Ответ: (-3; -3)

2. – 3х2 – 2у2 – 6ху –2у + 1=0

(привести к виду: -3(х+у)2 + (у –1)2= 0)

Ответ: (-1; 1)

3. х2 + 3у2+2ху + 28у +98 =0

(привести к виду: (х+у)2 +2(у+7)2 =0)

Ответ: (7; -7)

Заключение.

В данной научной работе были изучены уравнения с двумя переменными второй степени, рассмотрены способы их решения. Поставленная задача выполнена, сформулирован и описан более краткий способ решения, основанный на выделении полного квадрата и замене уравнения на равносильную систему уравнений, в результате упрощена процедура нахождения корней уравнения с двумя переменными.

Важным моментом работы является то, что рассматриваемый прием применяется при решении различных математических задач связанных с квадратичной функцией, построением кривых второго порядка, нахождением наибольшего (наименьшего) значения выражений.

Таким образом, прием разложения уравнения второго порядка с двумя переменными на сумму квадратов имеет самые многочисленные применения в математике.

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

  • повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5 2+6 = 1

x = 4, y = -2.5 4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Утверждение 2.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

Где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

Утверждение 4.

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  1. 9x – 18y = 5
  2. x + y= xy
  3. Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

5 не делится нацело на 9, в целых числах решений нет.

Методом подбора можно найти решение

Ответ: (0;0), (2;2)

3) Составим уравнение:

Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

Многие учащиеся, составив уравнение, не смогут его решить.

Ответ: мальчиков 4, девочек 6.

3) Изучение нового материала

Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

I. Метод рассмотрения остатков от деления.

Пример. Решить уравнение в целых числах 3x – 4y = 1.

Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

Ответ: где m Z.

Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

Пример: Решить уравнения в целых числах.

Пусть y = 4n, тогда 16 - 7y = 16 – 7 4n = 16 – 28n = 4*(4-7n) делится на 4.

y = 4n+1, тогда 16 – 7y = 16 – 7 (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

y = 4n+2, тогда 16 – 7y = 16 – 7 (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

y = 4n+3, тогда 16 – 7y = 16 – 7 (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

Следовательно, y = 4n, тогда

4x = 16 – 7 4n = 16 – 28n, x = 4 – 7n

Ответ: , где n Z.

II. Неопределенные уравнения 2-ой степени

Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

Пример: Решить уравнение в целых числах.

13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13 1 = 1 13 = (-1)(-13) = (-13)(-1)

Рассмотрим эти случаи

Ответ: (7;-3), (7;3), (-7;3), (-7;-3).

4) Домашнее задание.

Примеры. Решить уравнение в целых числах:

(x - y)(x + y)=4

2x = 4 2x = 5 2x = 5
x = 2 x = 5/2 x = 5/2
y = 0 не подходит не подходит
2x = -4 не подходит не подходит
x = -2
y = 0

Ответ: (-2;0), (2;0).

Ответы: (-10;9), (-5;3), (-2;-3), (-1;-9), (1;9), (2;3), (5;-3), (10;-9).

в)

Ответ: (2;-3), (-1;-1), (-4;0), (2;2), (-1;3), (-4;5).

Итоги. Чтозначит решить уравнение в целых числах?

Какие методы решения неопределенных уравнений вы знаете?

Приложение:

Упражнения для тренировки.

1) Решите в целых числах.

а) 8x + 12y = 32 x = 1 + 3n, y = 2 - 2n, n Z
б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z

2) Найти целые неотрицательные решения уравнения.

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.