Меню

Улучшение и усиление конструкций стен и отдельных опор. Технология усиления кирпичных стен: делаем правильно

Кровельные материалы

Ткачев Сергей

Обследование каменных и армокаменных конструкций выполняется с учетом требований СНиП 11-22-81 «Каменные и армокаменные конструкции», а также «Рекомендаций по усилению каменных конструкций зданий и сооружений».

Перед обследованием каменных конструкций необходимо выявить их структуру, выделив несущие элементы. Особенно важно учесть реальные размеры несущих элементов, расчетную схему, оценить величины деформаций и разрушений, выявить условия опирания на каменную конструкцию балок, плит и других изгибаемых элементов, состояние арматуры (в армокаменных конструкциях) и закладных деталей. От названных выше условий напрямую зависят размеры и характер дефектов, наличие типичных разрушений (сколы и трещины).

Для определения прочности каменной кладки применяют инструменты и приборы механического действия, а также ультразвуковые приборы. Молотками и зубилами путем ряда ударов можно приближенно оценить качественное состояние материала каменных и бетонных конструкций. Более точные данные получают с помощью специальных молотков, т. е. приборов механического действия, основанных на оценке следов или результатов удара по поверхности испытываемой конструкции. Наиболее простой, хотя и менее точный инструмент этого вида- молоток Физделя. На ударном торце молотка впрессован шарик определенного размера. Путем локтевого удара, создающего приблизительно одинаковую силу у разных людей, на исследуемой поверхности остается след-лунка. По величине ее диаметра с. помощью тарировочной таблицы оценивают прочность материала.

Более точным инструментом является молоток Кашкарова, при пользовании которым силу удара шариком по исследуемому материалу учитывают по размеру следа на специальном стержне, расположенном за шариком.

Но наиболее современными и точными приборами механического действия являются пружинные: прибор Академии Коммунального хозяйства РСФСР, Центрального научно-исследовательского института строительных конструкций. Принцип действия этих приборов основан на учете определенной силы удара, вызываемого спуском взведенной пружины. Прибор этого типа представляет собой корпус, в котором помещена спиральная пружина, соединенная со стержнем-ударником. После нажима на спусковой крючок пружина отпускается, и стержень-ударник наносит удар. В приборе ЦНИИСКа силу удара можно установим равной 12,5 или 50 кг/см 2 для каменных материалов различной прочности.

Для определения изгибов и деформаций вертикальных поверхностей, их формы и характера отступлений от вертикальности и плоскости применяют нивелир со специальной насадкой, позволяющей вести визирование, начиная с 0,5 м вместо минимальных 3,5 м, когда насадки нет.

Рельеф вертикальных поверхностей выявляют способом визирования инструмента из одной его стоянки на рейку, прикладываемо горизонтально к заранее намеченным точкам обследуемой поверхности.Результаты измерения деформаций горизонтальных или вертикальных поверхностей наносят на схемы, на которых для наглядности выявляют, наподобие горизонталей, линии равных отклонений от горизонтальной или вертикальной плоскостей. Сечение придают равным 2-5 мм в зависимости от степени отклонения или нарушения положения или местных дефектов обследуемого элемента и его общих размеров.

Однако, в первую очередь, необходимо выяснить характер негативных изменений в кладке и установить стабилизировался ли процесс образования трещин, или их количество и ширина раскрытия нарастают во времени. Для этого в самой кладке устанавливаются маяки. Маяк представляет собой полоску из гипса, стекла или металла, накрывающую обе стороны трещины. Маяки из гипса и стекла в случае продолжения деформации, вызвавшей появление трещин, лопаются.

Приборы для диагностики прочности материала: а - молоток Физделя; б-то же Кашкарова; в - пистолет ЦНИИСКа: 1- калиброванный шарик; 2 - угловой масштаб; 3 - тарировочная таблица; 4- сменный стержень для фиксирования следа удара

Измерение деформаций вертикальной поверхности с помощью нивелира с оптической насадкой: а-план; б- поверхность стены; в - разрез; 1 - нивелир; 2 - рейка; 3 - места прикладывания peйки; 4 - линии равных отклонений от плоскости


Маяки для наблюдения за состоянием трещин: /-трещина; 2-штукатурка и алебастровый раствор; 3- материал стены; 4- маяк гипсовый; 5 - маяк стеклянный; 6 - металлическая пластинка; 7 - риски через 2-3 мм; 8 - гвоздь

Путем измерения величины расхождения половинок маяка устанавливают характер изменения трещины или ее стабилизацию. Металлический маяк прикрепляют к одной стороне трещины, и он может передвигаться по другому ее краю, по другой стороне ее, где фиксируют первоначальное и последующие положения конца маяка. Самым простым маяком является бумажный маячок , представляющий собой полоску бумаги наклеиваемую на трещину, при дальнейшем расширении трещины бумажный маячок разрывается.

Трещины в несущих каменных конструкциях соответствуют стадиям трещинообразования (или стадиям работы кладки при сжатии). При усилиях в кладке F , не превышающих усилия F crc , при котором в кладке появляются трещины, конструкция имеет достаточную для восприятия существующей нагрузки несущую способность, трещины не образуются. При нагрузках F F crc начинается процесс образования трещин. Поскольку кладка плохо сопротивляется растяжению, на растянутых поверхностях (участках) трещины
появляются значительно раньше возможного разрушения конструкции.

В качестве основных причин образования трещин выдeляют:

1) низкое качество кладки (плохие растворные швы, несоблюдение перевязки, забутовка с нарушением технологии и т.п.);

2) недостаточная прочность кирпича и раствора (трещиноватость и криволинейность кирпича, несоблюдение технологии сушки при его изготовлении; высокая подвижность раствора и т.п.);

3) совместное применение в кладке разнородных по прочности и деформативности каменных материалов (например, глиняного кирпича совместно с силикатным или шлакоблоками);

4) использовaниe каменных материалов не по назначению (например, силикатного кирпича в условиях повышенной влажности);

5) низкое качество работ, выполняемых в зимнее время (использование не очищенного от наледи кирпича; применение смерзшегося раствора, отсутствие в растворе противоморозных добавок);

6) невыполнение температурно-усадочных швов или недопустимо большое расстояние между ними;

7) агрессивные воздействия внешней среды (кислотное, щелочное солевое воздействия; попеременное замораживание и оттаивание, увлажнение и высушивание);

8) неравномерная осадка фундамента в здании.

Не случайно осадки фундаментов указаны последним условием возникновения трещин в каменной кладке. Следует иметь в виду, что в период массового строительства в каменной кладке использовались растворы без противоморозных добавок, тощие, непластичные, т.е. очень дешевые. Все это способствовало обильному образованию усадочных трещин, которые необходимо при обследовании отделить от чисто осадочных трещин, имеющих специфический, легко определимый характер.

Рассмотрим процесс образования трещин в каменной кладке при сжатии

Первая стадия — появление первых волосяных трещин в отдельных камнях. Усилие F crc
, при котором появляются трещины на этом этапе, зависит, в основном, от вида используемого в кладке раствора:

— в кладке на цементном растворе F crc = (0,8 — 0,6) F u ; ;

— в кладке на сложном растворе F crc = (0,7 — 0,5) F u ;

— в кладке на известковом растворе F crc = (0,6 — 0,4) F u ,

где F u разрушающее усилие.

Вторая стадия — прорастание и объединение отдельных трещин. Эта стадия начинается и интенсивнее протекает по южному фасаду здания, испытывающему наибольшие температурные колебания атмосферной среды. Кроме того, прорастание трещин наблюдается при неправильной организации наружных водостоков, нарушении их системы в местах периодического намокания кладки.

Третья стадия – дальнейшее образование больших поверхностей разрушения и исчерпание прочности кладки.

На фотографии представлено сооружение с мансардой, опирающейся на внутреннюю поперечную стену. На свободной части кровли был создан уклон под организаванную систему наружного водостока, однако угол здания значительно промачивается. Стрелка показывает на развивающуюся трещину, появившуюся после одного года эксплуатации реконструированного сооружения

Дефекты кирпичной кладки и их причины:

а-износ от 20 до 40%; б-износ 41-60%; в- перегруженные простенки с износом до 40%; г- то же, при большем износе; д - обнажение кирпичной кладки при износе штукатурки

Анализируя картину трещин, следует помнить, что появление отдельных трещин в перевязочных камнях свидетельствует о перенапряжении в каменной кладке. Развитие трещин во второй стадии указывает на значительное перенапряжение кладки и необходимость ее разгрузки или усиления.

При образовании больших поверхностей разрушения целесообразна замена кладки на новую или ее усиление конструкцией, полностью воспринимающей эксплуатационную нагрузку.

В процессе эксплуатации сооружения могут раскрыться трещины из-за неправомерно большой длины температурного блока или из-за отсутствия температурно-усадочного шва вообще. В период реконструкции с возведением эркеров, навешиванием лифтов, устройством дополнительных и мансардных этажей в кладке могут появиться трещины из-за недостаточной площади опирания перемычек на стену и низкой прочности каменной кладки, от перегрузки простенка и низкой прочности каменной кладки. Возможны и другие причины трещинообразования. Например, хаотично расположенные трещины часто возникают в сооружениях, оказавшихся в непосредственной близости от места забивания свай, или в старых зданиях, износ кирпичной кладки которых достигает 40% и более.

Прочность кирпича и камней необходимо определять в соответствии с требованиями ГОСТ 8462-85, раствора — ГОСТ 5802-86 или СН 290-74. Плотность и влажность каменных кладок определяют в cooтветствии с ГОСТ 6427-75, 12730.2-78 путем установления разницы веса образцов до и после высушивания. Морозостойкость каменных материалов и растворов, а также их водопоглощение устанавливают по ГОСТ 7025-78.

Отбор образцов для испытаний производят из малонагруженных элементов конструкций при условии идентичности применяемых на этих участках материалов. Образцы кирпичей или камней должны быть целыми без трещин. Из камней неправильной формы выпиливают кубики размером ребра от 40 до 200 мм или высверливают цилиндры (керны) диаметром от 40 до 150 мм . Для испытаний растворов изготовляют кубы с ребром от 20 до 40 мм , составленные из двух пластин paствора, склеенных гипсовым раствором. Образцы испытывают на сжатие с использованием стандартного лабораторного оборудования. Участки кирпичной (каменной) кладки, с которых отбирали образцы для испытаний, должны быть полностью восстановлены для обеспечения исходной конструкции.

Технология восстановления и усиления кирпичной кладки

Как уже было отмечено выше, кирпичные корпуса жилых зданий массовых серий имели высокую надежность и значительный запас прочности. Но длительный срок эксплуатации, нарушения технических условий содержания могли нанести несущим кирпичным стенам значительный ущерб. В зависимости от видимых повреждений и состояния конструкций, нагрузок, действующих на них, других факторов, затрудняющих нормальную эксплуатацию, при реконструкции предпринимаются мероприятия по восстановлению несущей способности кирпичной кладки. Кроме того, при повышении этажности сооружения или иному увеличению строительного объема сооружения возникает необходимость в усилении кирпичных конструкций.

Восстановление несущей способности кладки сводится к заделке и локализации трещин. Естественно, что указанную задачу необходимо решать после выявления и устранения причин, вызвавших трещинообразование :

1) ликвидировать или стабилизировать неравномерные осадки фундамента путем усиления фундаментов или оснований;

2) изменить условия передачи нагрузки на треснувший простенок с целью перераспределения нагрузки на большую площадь;

3) перераспределить нагрузки на другие (или даже дополнительные) конструкции в случае недостаточной прочности самой кладки.

Следует отметить, что заделка трещин должна сопровождать и мероприятия по усилению кирпичных конструкций , которые необходимы при увеличении нагрузок и невозможности их перераспределения на другие элементы сооружения.

Технологически заделка трещин в кирпичных стенах может производиться одним из следующих способов или их сочетанием.

Инъектирование трещин — нагнетание в трещины поврежденной кладки растворов жидкого цемента или полимер-цементного раствора, битума, смолы. Этот способ восстановления несущей способности кладки применяется в зависимости от вида конструкции, характера ее дальнейшего использования, имеющихся возможностей инъектирования, а главное, при локальном характере и небольшом раскрытии трещины. Оно может осуществляться с использованием различных материалов. В зависимости от их вида различают силикатизацию, битумизацию, смолизацию и цементацию . Инъектирование позволяет не только замонолитить кладку, но и восстановить, а в ряде случаев и увеличить ее несущую способность, что происходит без увеличения поперечных размеров конструкции.

Наиболее широко применяемы цементные и полимер-цементные растворы. Для обеспечения эффективности инъектирования применяют портландцемент марки не менее 400 с тонкостью помола не менее 2400 см 2 /г , с густотой цементного теста 22 — 25%, а также шлакопортландцемент марки 400 с небольшой вязкостью в разжиженных растворах. Песок для раствора применяют мелкий с модулем крупности 1,0 — 1,5 или тонкомолотый с тонкостью помола, равной 2000-2200 см 2 /г. Для повышения пластичности состава в раствор добавляются пластифицирующие добавки в виде нитрита натрия (5% от массы цемента), поливинилацетатную эмульсию ПВА с полимерцементным отношением П/Ц=0,6 или нафталиноформальдегидную добавку в количестве 0,1% от массы цемента.

К инъекционным растворам предъявляют достаточно жесткие требования: малое водоотделение, необходимая вязкость, требуемая прочность на сжатие и сцепление, незначительная усадка, высокая морозостойкость.

При небольших трещинах в кладке (до 1,5 мм ) применяют полимерные растворы на основе эпоксидной смолы (эпоксидная ЭД-20 (или ЭД-16) — 100 мас.ч .; модификатор МГФ-9 — 30 мас.ч .; отвердитель ПЭПА – 15 мас.ч.; тонкомолотый песок – 50 мас.ч), а также цементно-песчаные растворы с добавкой тонкомолотого песка (цемент – 1 мас.ч.; суперпластификатор нафталиноформальдегид – 0,1 мас.ч.; песок – 0,25 мас.ч.; водоцементное отношение – 0,6).

При более значительном раскрытии трещин применяют цементно-полимерные растворы состава 1:0,15:0,3 (цемент; полимер ПВА; песок) или 1:0,05:0,3 (цемент: пластификатор нитрит натрия: песок), В/Ц=0,6, модуль крупности песка М к =1. Раствор нагнетается под давлением до 0,6 МПа. Плотность заполнения трещин определяется через 28 суток после инъектирования.

Раствор нагнетается через инъекторы диаметром 20-25 мм. Их устанавливают в специально просверленные отверстия через 0,8-1,5 метра по длине трещины. Диаметр отверстий должен обеспечить установку трубки инъектора на цементном растворе. Глубина отверстий – не более 100 мм , трубка инъектора закрепляется в отверстии проконопаченной паклей.


Инъектирование трещин шириной до 10 мм цементно-песчаным раствором:

1- кладка; 2- трещина; 3- отверстия для инъекторов через 800-1500 мм; 4- стальная трубка инъектора; 5- пакля, проконопаченная на клею; 6- подача раствора

Установка скоб из арматурной стали используется в методиках восстановления несущей способности кладки при раскрытии трещин более 10 мм . Для этого в кладке фрезой делается углубление по размеру скобы. Скоба закрепляется болтами по краям, сама трещина обычно инъектируется цементно-песчаным раствором и зачеканивается жестким раствором.

Установка скоб из арматурной стали: 1-усиливаемая стена; 2-трещина в стене, инъектированная цементно-песчаным раствором после установки скоб; 3-скобы из арматурной стали; 4-паз в кладке, выбранный фрезой; 5-углубления по концам паза, выполненные сверлом; 6-заполнение цементно-песчаным раствором пазов и углублений

При значительных повреждениях кладки сетью трещин скобы выполняют двухсторонними, в этом случае кладка испытывает двухстороннее обжатие. Развитие многочисленных сквозных трещин можно остановить, используя вместо скобы накладки из полосовой стали , которые устанавливаются с шагом 1,5-2 толщины стены.

Двухсторонние скобы из арматурной стали на болтах: 1- кладка; 2- сквозная трещина; 3- накладки из полосовой стали; 4- стяжные болты; 5- отверстия в стене

Разрушения могут быть настолько значительны, что в некоторых случаях требуется частичная разборка и перекладка разрушенной кирпичной кладки. Как правило, это производится с устройством вставки кирпичных замков, снабженных якорем .

Широкая, более 10 мм, трещина (1 ) перехватывается одно- или двухсторонней накладкой (2) , принимаемой уже не из полосовой стали, а из прокатного металла, который крепится к стене анкерными болтами. В этом случае накладка именуется якорем .

По всей длине развития трещины извлекается поврежденный кирпич на толщину в два кирпича и заменяется армированной кладкой на цементно-песчаном растворе, именуемой кирпичным замком (3-4 ).

Частичное или полное заполнение проемов кладкой: 1- усиливаемый простенок; 2- оконные проемы; 3- армированная кладка из кирпича марки М75-100 на растворе М50-75; 4- шов, расклиниваемый металлической пластиной и зачеканиваемый цементно-песчаным раствором

Схема разгруэки кирпичных простенков: 1 -перемыbr /чка-, 2-доски 50-60 мм; 3- стойки диамером более 20 см; 4 -деревянные клинья; 5- временное крепление стоек

Повышение несущей способности и устойчивости простенков может быть обеспечено увеличением площади сечения , устройством различных обойм или металлического каркаса .

Повышение площади сечения простенка достигают увеличением его ширины. В этом случае с двух сторон простенка выкладывают новые участки кладки, которую надежно перевязывают со старой, а при необходимости и армируют. Поврежденные несущие простенки разгружаются, площадь сечения простенков увеличивается, соответственно уменьшается площадь оконных проемов, поэтому оконные блоки подлежат замене.

При опирании на усиливаемый простенок стропильной конструкции или отклонении стены от вертикали на величину более 1/3 толщины кирпича, простенок предварительно разгружают путем подведения временных деревянных или металлических столбов на гипсовых растворах.

Основными способами усиления кирпичной кладки , являются хорошо проверенные способы устройства обойм , наращиваний или рубашек, разделяемые на железобетонные и растворные . При усилении железобетонными обоймами, рубашками и наращиваниями используются бетон класса В10 и арматура класса А1, шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и изменяется в пределах от 4 до 12 см .

Растворные обоймы, рубашки и наращивания , называемые также штукатурными , отличаются от железобетонных тем, что в них используется цементный раствор марки 75-100, которым защищается арматура усиления.

Устройство железобетонной обоймы эффективно при поверхностном разрушении материала простенков и столбов на незначительную глубину или при возникновении глубоких трещин, когда возможно уширение простенков. В первом случае разрушенные участки простенка расчищают на глубину не менее толщины железобетонной обоймы, и сечение простенка в результате ее устройства не меняется. Во втором случае сечение простенка увеличивается за счет устройства железобетонной обоймы.

Технологический процесс устройства железобетонной обоймы простенков состоит из удаления оконных заполнений, расчистки разрушенных участков или вырубки простенка на необходимую глубину, удаления оконных четвертей, установки арматуры, устройства опалубки, бетонирования, ухода за бетоном, снятия опалубки и разборки подмостей. Рабочая арматура железобетонной обоймы может быть предварительно напряжена нагреванием до 100-150° С (например, нагревом электрическим током).

Устройство железобетонных обойм: а-без увеличения сечения простенка; б-с увеличением сечения простенка

Устройство штукатурной предварительно напряженной обоймы: 1-усиливаемая стена; 2-металлические пластины с отверстиями для тяжей; 3-тяжи-связи; 4-отверстия в стене для тяжей; 5-арматурные стержни, приваренные к пластинам и попарно стянутые; 6- штукатурка из цементно-песчаного раствора; 7-арматурные сетки, привязанные к стержням

Вместо арматурных каркасов при усилении возможно применять сетки из проволоки диаметром 4-6 мм с ячейкой 150х150 мм. В обоих случаях армирования и сетки, и каркасы крепятся к усиливаемой поверхности штырями (анкерами).

На больших площадях устанавливаются дополнительные хомуты-связи шагом не более 1 м при средней длине 75 см.

Опалубку железобетонной обоймы наращивают снизу вверх в процессе бетонирования. Для устройства железобетонных обойм используют метод торкретирования, при котором опалубка не требуется. В этом случае на заармированную поверхность простенка наносят под давлением бетонную смесь с помощью цемент-пушки. Преимуществом такого метода устройства железобетонной обоймы является механизация процесса бетонирования. Железобетонная обойма увеличивает несущую способность заключенного в нее элемента в 2-Зраза


Хомуты-связи железобетонной обоймы: 1- усиливаемая поверхность стены; 2- арматура диаметром 10 мм;3- хомуты-связи диаметром 10 мм; 4- отверстия в кладке;5- бетон обоймы; 6- арматурные каркасы

Устройство штукатурной или железобетонной рубашки: 1-усиливаемый простенок; 2-проймы; 3-рубашка штукатурная 30-40 мм или железобетонная толщиной 60-100 мм; 4-арматура диаметром 10 мм; 5-арматура диаметром 12 мм; 6-металлические штыри Устройство железобетонного сердечника: 1-усиливаемый простенок; 2-проемы; 3-стойка (сердечник) из железобетона; 4-ниша, вырубленная в простенке;5-арматурный каркас; 6-бетон

Растворные рубашки и наращивания отличаются от обойм только одним конструктивным признаком – они выполняются односторонними . Рубашка может быть выполнена и не на всю ширину простенка – в виде сердечника.

Иногда стальные обоймы усиления кирпичной кладки на постоянно эксплуатируемых зданиях оставляют без защитного покрытия раствором или бетоном, устраивая металлический каркас усиления.

Усиление простенков металлическим каркасом: а- узкого простенка; б- широкого простенка; 1-кирпичный элемент; 2-стальные уголки; 3-планка;
4-поперечная связь

Устройство накладных поясов из уголков: 1-усиливаемый простенок;

2-уголки накладных поясов; 3-поперечные планки; 4-стяжные болты; 5-штукатурка цементно-песчаным раствором по металлической сетке

Устройство металлического каркаса простенков менее трудоемко и материалоемко, чем устройство железобетонной обоймы, и имеет широкое применение.

Подготовка к устройству металлических каркасов простенков состоит из разгрузки простенков, удаления заполнений оконных проемов и срубки четвертей. При этом методе по углам простенков на всю их высоту устанавливают и плотно подгоняют к простенкам стойки из уголковой стали, которые через 30-50 см по высоте соединяют полосовой сталью, привариваемой к полкам уголков встык. Затем простенок обтягивают проволочной металлической сеткой и оштукатуривают.

Металлический каркас можно накладывать на простенок или втапливать в него заподлицо. Во втором случае перед установкой каркаса срубают углы простенков и пробивают горизонтальные штрабы в местах установки металлических соединительных полос.

После установки каркаса щели между металлическими элементами и простенком тщательно зачеканивают раствором. Если разрушению подверглись и перемычки, опирающиеся на простенок, более эффективным становится усиление простенка подведением стоек из уголков. При этом стойки выполняются несколько длиннее расстояния между перемычкой и полом. Вверху они крепятся к оголенной арматуре перемычек, а в нижней части к накладному поясу из швеллера, монтируемому на корпусе реконструируемого объекта. Стойки выпрямляют попарно струбцинами, таким образом создается предварительное напряжение. Спрямления, надломы, разрезы в полках уголков завариваются.

Усиление углов зданий тоже целесообразно производить при помощи накладок из швеллера длиной 1.5-3 м. Накладки могут размещаться как с наружной, так и с внутренней поверхности стены. С кирпичной кладкой они соединяются с помощью стяжных болтов, устанавливаемых в заранее просверленные отверстия. Стяжные болты располагаются по высоте усиливаемой части кладки через 0,8-1,5 м.

Подведение стоек из уголков: 1-усиливаемый простенок; 2-проемы; 3-стойки из неравнополочных уголков, выгнутые в сторону; 4-линии надлома; 5-закладная деталь; 6-оголенная арматура; 7-сварка; 8-раствор

При возникновении местных деформаций и для предотвращения дальнейшего раскрытия трещин осуществляют путем усиления зон сопряжений продольных и поперечных стен здания разгрузочных балок . Paзгрузочные балки устанавливают в ранее пробитые штрабы с одной или двух сторон стены на уровне верха фундамента или перемычек первого этажа.

Двусторонние балки через 2-2,5 м соединяются болтами диаметром l6-20 мм , пропускаемыми через ранее просверленные отверстия в балках и стене. Односторонние балки устанавливают на анкерные болты, гладкие концы которых закрепляют в стене установкой на цементном растворе в ранее просверленные гнезда. Соединения балок на болтах крепят гайками. Шаг анкерных болтов 2-2,5 м .

Щели между полками балок и кирпичной кладкой тщательно зачеканивают цементным раствором состава 1:3. Для изготовления разгрузочных балок используют швеллер или двутавр № 20-27. В местах разрыва стен на трещины на каждом этаже устанавливают скобы-стяжки из Обрезков проката длиной не менее 2 м. Перед установкой скобы-стяжки для нее в стене вырубают штрабу с таким расчетом, чтобы стяжку установить заподлицо с поверхностью кирпичной стены. В стене и в стяжке по разметке просверливают отверстия для болтов 20- 22 мм , с помощью которых скобу-стяжку крепят к стене. Расстояние от трещины до места установки болта должно быть не менее 70 см . Перед установкой скобу-стяжку обматывают проволочной сеткой или проволокой1-2 мм . После установки конструкции трещину и штрабу тщательно заделывают раствором марки М100.


Установка металлических накладок (каркаса) при армировании здания: 1-деформированное здание; 2-трещины в стенах здания; 3-накладки из швеллеров или из металлических пластин; 5-стяжные болты; 6-штраба для установки пластин, заделываемая раствором; 7-отверстия в стенах для болтов, после установки болтов зачеканивается раствором

Как правило, развитие трещин , связанных с неравномерной осадкой фундаментов , требует дополнительных мер не только по повышению несущей способности кладки, но жесткости всего сооружения в целом. Грубые нарушение технологии каменной кладки, недопустимые условия эксплуатации сооружения, как и в случае неравномерной осадки фундаментов, вызывают не только развитие трещин у оконных и дверных проемов, но и нарушения вертикальности ограждающих конструкций.

В местах отрыва наружных стен от внутренних для восстановления жесткости здания устанавливают связи из металлических каркасов или железобетонных шпонок . В этом случае говорят, что здание армируется.

Однако чаще всего, после устранения причин неравномерной осадки фундамента, здание нуждается в стягивании корпуса в целом. Пожалуй, единственным способом такого стягивания является создание напряженных поясов .

Устройство наружных напряженных поясов: 1-деформированное здание; 2-стальные тяжи; 3-прокатный профиль из уголка № 150; 4-стяжные муфты; 5-сварный шов; 6- трещины в стенах здания; 7-штраба в стене для заполненная цементно-песчаным раствором

Здесь следует подчеркнуть, что наиболее часто встречающейся ошибкой усиления корпуса кирпичных зданий с жесткой конструктивной схемой является создание вертикальных дисков жесткости (закладывание или уменьшение площади оконных проемов, устройство вертикальных металлических каркасов и т.п.), в то время как здесь наиболее важен горизонтальный диск жесткости . Напряженный пояс, называемый также «бандаж», принимается из арматурных стержней диаметром 20-40 мм , соединенных стяжными муфтами.

В редких случаях вместо арматуры используется стальной прокат. В результате получается усиливающий элемент, воспринимающий как растягивающие, так и сжимающие усилия, называемый связью-распоркой . Связи-распорки устанавливаются в уровне покрытия и в уровне междуэтажных перекрытий, они могут располагаться как с наружной, так и с внутренней стороны сооружения.

Устройство внутренних напряженных поясов: 1-деформационное здание; 2-стальные тяжи с гайками; 3-металлические пластины; 4-стяжные муфты; 5-отверстия в стенах, которые заделываются раствором после упаковки тяжей; 6-трещины в стенах здания

Усиление междуэтажных перекрытий жилых домов серии 1-447 определяется по наличию коротких трещин и раздроблению кирпичного камня в местах опирания плит перекрытия. Основной причиной разрушения обычно бывает недостаточная площадь опирания плиты перекрытия или отсутствие распределительной подушки.

Наиболее эффективной методикой усиления является технология монтажа стальных тяг и связей-распорок под плитой перекрытия, поскольку, как уже отмечалось, создание горизонтального диска жесткости в зданиях такого типа имеет превалирующее значение. Однако это весьма дорогой и многодельный способ, он возможен лишь при полной реконструкции с расселением жильцов. Поэтому стараются выполнить локальное усиление поврежденных конструкций.

Локальное усиление, в зависимости от вида плит перекрытия, при частичной или поэтапной реконструкции осуществляется путем:

увеличения площади опирания балки при помощи металлических или железобетонных стоек, усилие от которых передается вне зоны разрушения;

-увеличения площади опирания плиты посредством пояса, закрепленного в зоне разрушения кладки;

-устройства под концом плит перекрытия железобетонной подушки.

Расчет кирпичных элементов, усиленных армированием и обоймами

Продольное армирование , предназначенное для восприятия растягивающих усилий во внецентренно сжатых элементах (при больших эксцентриситетах), в изгибаемых и растянутых элементах, в усилениии кирпичной кладки при реконструкции встречается достаточно редко, поэтому в данном разделе не рассматривается. Однако с ростом сейсмической опасности некоторых районов центральной России вследствие подземных выработок и других антропогенных факторов, а также при прокладке железнодорожных и автомобильных магистралей вблизи жилых кварталов, продольное армирование применяется при облицовке тонких (до 51 см) кирпичных стен реконструируемых зданий.

Сетчатое армирование участков кладки существенно повышает несущую способность усиливаемых элементов каменных конструкций (столбов, простенков и отдельных участков стен). Эффективность сетчатого армирования при усилении определяется тем, что арматурные сетки, укладываемые в горизонтальные швы участков кладки, препятствуют ее поперечному расширению при продольных деформациях, вызываемых действующими нагрузками, и благодаря этому повышают несущую способность тела кладки в целом.

Сетчатое армирование применяется для усиления кладки из кирпича всех видов, а также из керамических камней со щелевидными вертикальными пустотами при высоте ряда не более 150 мм. Усиление сетчатым армированием кладки из бетонных и природных камней с высотой ряда более 150 мм мало эффективно.

Для кладки с сетчатым армированием применяются растворы марки 50 и выше. Сетчатое армирование применяется только при гибкостях или , а также при эксцентрицитетах, находящихся в пределах ядра сечения (для прямоугольных сечений e 0 <0,33 y). При больших значениях гибкостей и эксцентрицитетов сетчатое армирование не повышает прочности кладки.

Например, требуется определить сечение продольной арматуры для кирпичного столба 51 х 64 см, высотой 4,5 м. Столб выложен из обыкновенного глиняного кирпича пластического прессования марки 100 на растворе марки 50 . В среднем сечении столба действует приведенная расчетная продольная сила N п =25 т , приложенная с эксцентриситетом е о = 25 см в направлении стороны сечения, имеющей размер 64 см.

Столб армируем продольной арматурой, расположенной в pастянутой зоне снаружи кладки. Сжатую зону поперечного сечения столба армируем конструктивно, так как при наружном расположении aрматуры потребуется частая установка хомутов, предотвращающих выпучивание сжатой арматуры, что потребует дополнительного pacxода стали. Установка конструктивной арматуры в сжатой зоне является обязательной, так как она необходима для крепления хомутов.

Площадь поперечного сечения столба F=51 х 64 = 3260 см 2 . R=l5 кгс/см 2 (при F > 0,3 м 2 ). Расчетное сопротивление продольной арматуры из стали класса А-1 R a =l900 кгс/см 2 .

Растянутую арматуру принимаем из четырех стержней диаметром 10 мм F a =3,14 см 2 .

Определяем высоту сжатой зоны сечения х при h 0 =65 см, е=58 см и Ь=51 см:

1,25-15-51 х (58-65+ )-1900 -3,14-58 = 0,

а из полученного квадратного уравнения определяем х= 35 см < 0,55h o =36 см.

Так как условие удовлетворено, то несущую способноcть сечения определяем по при =1000:

пр = = =7

отсюда = 0,94.

Несущая способность сечения

0,94(1,25 x 15 x 51 x 35-1900 x 3,14) =25,6 т >N п =25 т.

Таким образом, при принятом сечении арматуры, несущая способность столба достаточна.

Комплексные конструкции выполняются из каменной кладки, усиленной железобетоном, работающим совместно с кладкой. Железобетон рекомендуется при этом располагать с внешней стороны кладки, что позволяет проверить качество уложенного бетона, марку которого следует принимать равной 100-150.

Комплексные конструкции применяются в тех же случаях, что и кладка с продольным армированием. Кроме того, их целесообразно применять, также как и сетчатое армирование, для усиления тяжело нагруженных элементов при осевом или внецентренном сжатии с небольшими эксцентрицитетами. Применение в этом случае комплексных конструкций позволяет резко уменьшить размеры поперечных сечении стен и столбов.

Элементы, усиленные обоймами применяются для усиления столбов и простенков, имеющих квадратное или прямоугольное поперечное сечение с соотношением размеров сторон не более 2,5. Необходимость такого усиления возникает, например, при надстройке существующих зданий. Иногда требуется yсилить кладку, имеющую трещины или другие дефекты (недостаточная прочность примененных материалов, низкое качество кладки, физический износ и т. п.)

Обоймы, также как и сетчатое армирование, уменьшают поперечные деформации кладки и благодаря этому повышают ее несущую cпособность. Кроме того, сама обойма также воспринимает часть нагрузки.

В предыдущих разделах были рассмотрены три вида обойм: стальные, железобетонные и армированные штукатурные.

Расчет элементов из кирпичной кладки, усиленной обоймами, при центральном и внецентренном сжатии при малых эксцентрицитетах (не выходящих за пределы ядра сечения) производится по формулам:

при стальной обойме

N n [(m к R + ) F+R а F а ];

при железобетонной обойме

N n [(m к R + ) F+m б R пр F б +R а F а ];

при армированной штукарной обойме

N (m R + ) F.

Величины коэффициентов и принимаются:

при центральном сжатии =1 и =1;

при внецентренном сжатии (по аналогии с внецентренно сжатыми элементами с сетчатым армированием)

1 — , где

N п - приведенная продольная сила; F- площадь сечения кладки;

F а -площадь сечения продольных уголков стальной обоймы, устанавливаемых на растворе, или продольной арматуры железобетонной обоймы;

f б - площадь сечения бетона обоймы, заключенная между хомутами и кладкой (без учета защитного слоя);

R a - расчетное сопротивление поперечной или продольной арматуры обоймы;

- коэффициент продольного изгиба, при определении значение а принимается как для неусиленной кладки;

т к - коэффициент условий работы кладки; для кладки без повреждений т к =1; для кладки с трещинами т к =0,7;

т б - коэффициент условий работы бетона; при передаче нагрузки на обойму с двух сторон (снизу и сверху) т б
=1; при передаче нагрузки на обойму с одной стороны (снизу или сверху) т б =0,7; без непосредственной передачи нагрузки на обойму т б =0,35.

— процент армирования, определяемый по формуле

x 100,

где f x -сечение хомута или поперечной планки;

h и b- размеры сторон усиливаемого элемента;

s- расстояние между осями поперечных планок при стальных обоймах (hs b, но не более 50 см.) или между хомутами при железобетонных и армированных штукатурных обоймах (s15 см).

Например, в среднем сечении простенка размером 51х90 см, расположенного в первом этаже здания, после окончания строительства надстройки будет действовать расчетная продольная сила N n =60 т, приложенная с эксцентриситетом е о = 5 см, направленным в сторону внутренней грани стены. Простенок выложен из силикатного кирпича марки 125 на растворе марки 25. Высота стены (от уровня пола до низа сборного железобетонного перекрытия) составляет 5 м. Требуется проверить несущую способность простенка.

Сечение простенка F= 51 х 90 = 4590 см 2 > 0,3м 2 .

Расчетное сопротивление кладки R = l4 кгс/см 2 . Расстояние от центра тяжести сечения до его края в сторону эксцентриситета

у = = 25,5 см; = =0,2<0,33,

эксцентриситет находится в пределах ядра сечения. Простенок рассчитываем на внецентренное сжатие с малым эксцентриситетом. Упругая характеристика кладки из силикатного кирпича на растворе марки 25 — = 750.

Приведённая гибкость простенка np == 11,3.

Коэффициент продольного изгиба = 0,85.

Коэффициент , учитывающий влияние эксцентрицитета, = = 0,83.

Определим несущую способность простенка:

0,85 x 14 x 4590 x 0,83 = 45 200 кгс= 60000 кгс.

Так как несущая способность простенка оказалась недостаточной, то усиливаем его обоймой из стальных равнобоких уголков размерами 60х60 мм, d=6 мм. Уголки устанавливаются на растворе в углах про стенка и соединяются между собой планками из полосовой стали сечением 5х35 мм, приваренными к уголкам на расстоянии s=50 см по высоте простенка.

Далее определяем несущую способность усиленного простенка. Коэффициент условий работы кладки т к =1. Расчетное сопротивление стальных планок R a =1500 кгс/см 2 . Площадь сечения планки f x = 0,5х3,5= 1,75 см 2 . Расчетное сопротивление уголков обоймы (нагрузка на уголки не передается) R a =430 кгс/см 2 . Площадь сечения уголков F a =6,91х4=27,6 см 2 . Далее определяем коэффициенты и , =0,83, =1-=0,61 и соответствующий процент армирования: =х100=0,21%

Отсюда несущая способность усиленного простенка составит:

0,83.0,85[(14 +0,61хх)4590+430 х27,6]=63800 кгс > N п =60000 кгс

Несущая способность усиленного простенка достаточна.

При реконструкции жилых зданий со стенами из кирпичной кладки возникает необходимость восстановления несущей способности или усиления элементов кладки вследствие увеличения нагрузок от надстраиваемых этажей. При длительной эксплуатации зданий наблюдаются признаки разрушения простенков, столбов и кладки стен в результате неравномерных осадок фундаментов , атмосферных воздействий, протечек кровли и др.

Процесс восстановления несущей способности кладки следует начинать с исключения основных причин трещинообразования. Если этому процессу способствует неравномерная осадка здания, то следует исключить это явление известными и описанными ранее методами.

До принятия технических решений по усилению конструкций важно оценить фактическую прочность несущих элементов. Эта оценка выполняется методом разрушающих нагрузок, фактической прочности кирпича, раствора, а для армированной кладки - предела текучести стали. При этом необходимо наиболее полно учитывать факторы, снижающие несущую способность конструкций. К ним относятся трещины, локальные повреждения, отклонения кладки от вертикали, нарушение связей, опирания плит и т.п.

Что касается усиления кирпичной кладки, то накопленный опыт реконструкционных работ позволяет выделить ряд традиционных технологий, основанных на использовании: металлических и железобетонных обойм, каркасов; на инъецировании полимерцементных и других суспензий в тело кладки; на устройстве монолитных поясов по верхней части зданий (в случаях надстройки), предварительно напрягаемых стяжек и др. решений.

На рис. 6.40 приведены характерные конструктивно-технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой .

Рис. 6.40. Конструктивно-технологические варианты усиления кирпичных стен
а - схема усиления кирпичных стен здания металлическими тяжами; б , в , г - узлы размещения металлических тяжей; д - схема размещения монолитного железобетонного пояса; е - то же, тяжами с центрирующими элементами: 1 - металлический тяж; 2 - натяжная муфта: 3 - монолитный железобетонный пояс; 4 - плита перекрытий; 5 - анкер; 6 - центрирующая рама; 7 - опорная пластинка с шарниром

Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение. Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.


Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины. Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

Для элементов стен, простенков, столбов, имеющих разрушения кирпичной кладки, но не потерявших устойчивость,производится местная замена кладки. При этом марка кирпича принимается на 1-2 единицы выше, чем существующая.

Технология производства работ предусматривает: устройство временных разгрузочных систем, воспринимающих нагрузку; разборку фрагментов нарушенной кирпичной кладки; устройство кладки. При этом необходимо учитывать, что удаление временных разгрузочных систем должно осуществляться после набора прочности кладки не менее 0,7 R КЛ. Как правило, такие восстановительные работы ведутся при сохранении конструктивной схемы здания и фактических нагрузок.

Весьма эффективны приемы восстановления неоштукатуренной кирпичной кладки, когда требуется сохранить прежний вид фасадов. В этом случае очень тщательно подбираются кирпич по цветовой гамме и размерам, а также материал швов. После восстановления кладки производится пескоструйная очистка, что позволяет получать обновленные поверхности, где новые участки кладки не выделяются из основного массива.

В связи с тем что каменные конструкции воспринимают в основном сжимающие усилия, то наиболее эффективным способом их усиления является устройство стальных, железобетонных и армоцементных обойм. При этом кирпичная кладка в обойме работает в условиях всестороннего сжатия, когда поперечные деформации значительно уменьшаются и, как следствие, увеличивается сопротивление продольной силе.

Расчетное усилие в металлическом поясе определяется по зависимости N = 0,2 R KJl × l × b , где R KJl - расчетное сопротивление кладки скалыванию,тс/м 2 ; l - длина участка усиливаемой стены, м; b - толщина стены, м.

Для обеспечения нормальной работы кирпичных стен и предотвращения дальнейшего раскрытия трещин первоначальным этапом является восстановление несущей способности фундаментов методами усиления, исключающей появление неравномерных осадок.

На рис. 6.41 приведены наиболее распространенные варианты усиления каменных столбов и простенков стальными, железобетонными и армоцементными обоймами.

Рис. 6.41. Усиление столбов стальной обоймой (а), армокаркасами (б), сетками и железобетонными обоймами (в , г ) 1 - усиливаемая конструкция; 2 - элементы усиления; 3 -защитный слой; 4 - щитовая опалубка с хомутами; 5 - инъектор; 6 - материальный шланг

Стальная обойма состоит из продольных уголков на всю высоту усиливаемой конструкции и поперечных планок (хомутов) из плоской или круглой стали. Шаг хомутов принимается не более меньшего размера сечения, но не более 500 мм. Для включения обоймы в работу следует инъецировать зазоры между стальными элементами и кладкой. Монолитность конструкции достигается путем оштукатуривания высокопрочными цементно-песчаными растворами с добавкой пластификаторов, способствующих большей адгезии с кладкой и металлоконструкциями.

Для более эффективной защиты на стальную обойму устанавливается металлическая или полимерная сетка, по которой осуществляется нанесение раствора толщиной 25-30 мм. При незначительных объемах работ раствор наносится вручную с помощью штукатурного инструмента. Большие объемы работ выполняются механизированным путем с подачей материала растворонасосами. Для получения высокопрочного защитного слоя используются установки торкретирования и пнев-мобетонирования. Из-за высокой плотности защитного слоя и большой адгезии с элементами кладки достигается совместная работа конструкции и повышается ее несущая способность.

Устройство железобетонной рубашки осуществляется путем установки арматурных сеток по периметру усиливаемой конструкции с креплением ее через фиксаторы к кирпичной кладке. Крепление осуществляется путем использования анкеров или дюбелей. Железобетонная обойма выполняется из мелкозернистой бетонной смеси не ниже класса В10 с продольной арматурой классов А240-А400 и поперечной - А240. Шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и составляет 4-12 см. В зависимости от толщины обоймы существенно меняется технология производства работ. Для обойм толщиной до 4 см используются методы нанесения бетона торкретированием и пневмобетонированием. Окончательная отделка поверхностей достигается устройством штукатурного накрывочного слоя.

Для обойм толщиной до 12 см по периметру усиливаемой конструкции устанавливается инвентарная опалубка. В ее щитах устанавливаются инъекционные трубки, через которые мелкозернистая бетонная смесь нагнетается под давлением 0,2-0,6 МПа в полости. Для повышения адгезионных свойств и заполнения всего пространства бетонные смеси пластифицируются путем введения суперпластификаторов в объеме 1,0-1,2 % массы цемента. Снижение вязкости смеси и повышение ее проницаемости достигаются дополнительным воздействием высокочастотной вибрации путем контакта вибратора с опалубкой рубашки. Достаточно хороший эффект дает импульсный режим подачи смеси, когда кратковременные воздействия повышенного давления обеспечивают более высокий градиент скоростей и высокую проницаемость.

На рис. 6.41,г приведена технологическая схема производства работ путем инъецирования железобетонной обоймы. Установка опалубки производится на всю высоту конструкции с обеспечением защитного слоя арматурного заполнения. Нагнетание бетона осуществляется по ярусам (3-4 яруса). Процесс окончания подачи бетона фиксируется по контрольным отверстиям с противоположной стороны от места нагнетания. Для ускоренного твердения бетона используются системы термоактивных опалубок, греющих проводов и другие приемы повышения температуры твердеющего бетона. Демонтаж опалубки осуществляется по ярусам при достижении бетоном распалубочной прочности. Режим твердения при t = 60 °С обеспечивает распалубочную прочность в течение 8-12 ч прогрева.

Железобетонные обоймы могут выполняться в виде элементов несъемной опалубки (рис. 6.42). При этом наружные поверхности могут иметь мелкий или глубокий рельеф или гладкую поверхность. После установки несъемной опалубки и крепления ее элементов обеспечивается замоноличивание пространства между усиливаемой и ограждающей конструкцией. Использование несъемной опалубки имеет значительный технологический эффект, так как отпадает необходимость в разборке опалубки, а главное - исключается отделочный цикл работ.

Рис. 6.42. Усиление столбов с использованием опалубки-облицовки из архитектурного бетона 1 - усиливаемая конструкция; 2 - армокаркас; 3 - элементы облицовки; 4 - бетон омоноличивания

Наиболее эффективными несъемными опалубками следует считать тонкостенные элементы (1,5-2 см), изготовленные из дисперсно-армированного бетона. Для вовлечения опалубки в работу она снабжается выступающими анкерами, существенно повышающими адгезию с укладываемым бетоном.

Устройство растворных обойм отличается от железобетонных толщиной наносимого слоя и составом. Как правило, для защиты арматурной сетки и обеспечения ее адгезии с кирпичной кладкой используются штукатурные цементно-песчаные растворы с добавкой пластификаторов, повышающих физико-механические характеристики. Технология строительных процессов практически не отличается от выполнения штукатурных работ.

Для обеспечения совместной работы элементов обоймы по ее длине, превышающей в 2 и более раз толщину, необходима установка дополнительных поперечных связей через сечение кладки. Усиление кирпичной кладки может быть произведено методом инъецирования. Оно осуществляется путем нагнетания через заранее пробуренные шпуры цементного или полимерцементного раствора. В результате достигается монолитность кладки и повышаются ее физико-механические характеристики.

К инъекционным растворам предъявляются достаточно жесткие требования. Они должны обладать малым водоотделением, низкой вязкостью, высокой адгезией и достаточными прочностными характеристиками. Раствор нагнетается под давлением до 0,6 МПа, что обеспечивает достаточно обширную зону проникновения. Параметры инъекции: расположение инъекторов, их глубина, давление, состав раствора в каждом конкретном случае подбираются индивидуально с учетом трещиноватости кладки, состояния швов и других показателей.

Прочность кладки, усиленной инъецированием, оценивается по СНиП II-22-81* «Каменные и армокаменные конструкции». В зависимости от характера дефектов и вида инъецированного раствора устанавливаются поправочные коэффициенты: тк = 1,1 - при наличии трещин от силовых воздействий и при использовании цементного и полимерцементного растворов; тк = 1,0 - при наличии одиночных трещин от неравномерных осадок или при нарушении связи между совместно работающими стенами; тк = 1,3 - при наличии трещин от силовых воздействий при инъекции полимерных растворов. Прочность растворов должна быть в пределах 15-25МПа.

Усиление кирпичных перемычек достаточно распространенное явление, что связано со снижением несущей способности распорной кладки вследствие выветривания швов, нарушения адгезии и другими причинами.

На рис. 6.43 приведены конструктивные варианты усиления перемычек с использованием различного рода металлических накладок. Они устанавливаются путем пробивки штраб и отверстий в кирпичной кладке и в дальнейшем омоноличиваются цементно-песчаным раствором по сетке.

Рис. 6.43. Примеры усиления перемычек кирпичных стен а , б - путем подведения накладок из уголковой стали; в , г - дополнительными металлическими перемычками из швеллера: 1 - кирпичная кладка; 2 - трещины; 3 - накладки из уголков; 4 - полосовые накладки; 5 - анкерные болты; 6 - накладки из швеллера

Для перераспределения усилий на железобетонные перемычки вследствие увеличения нагрузок на перекрытия используются металлические разгрузочные пояса, выполненные из двух швеллеров и объединенные болтовыми соединениями.

Усиление и повышение устойчивости кирпичных стен. Технология усиления базируется на создании дополнительной железобетонной рубашки с одной или двух сторон стены (рис.6.44). Технология производства работ включает процессы подготовки и очистки поверхности стен, сверления отверстий под анкеры, установки анкеров, крепления к анкерам арматурных стержней или сеток, омоноличивание.

Как правило, при достаточно больших объемах работ используется механизированный метод нанесения цементно-песчаного раствора: пневмобетонированием или торкретированием и реже ручным способом. Затем для выравнивания поверхностей наносится затирочный слой и выполняются последующие операции, связанные с отделкой поверхностей стен.

Рис. 6.44. Усиление кирпичных стен армированием а - отдельными стержнями арматуры; б - арматурными каркасами; в - арматурной сеткой; г - железобетонными пилястрами: 1 -усиливаемая стена; 2 - анкеры; 3 - арматура; 4 - штукатурный или торкрет-бетонный слой; 5 - металлические тяжи; 6 - арматурная сетка; 7 - армокаркас; 8 - бетон; 9 - опалубка

Эффективным приемом усиления кирпичных стен является устройство железобетонных одно- и двусторонних стоек в штрабах и пилястр.

Технология устройства двусторонних железобетонных стоек предусматривает образование штраб на глубину 5-6 см, высверливание сквозных отверстий по высоте стены, крепление с помощью тяжей арматурного каркаса и последующее омоноличивание образовавшейся полости. Для омоноличивания используют цементно-песчаные растворы с пластифицирующими добавками. Высокий эффект достигается при использовании растворов и мелкозернистых бетонов с предварительным домолом цемента, песка и суперпластификатора. Такие смеси кроме большой адгезии обладают свойством ускоренного твердения и высокими физико-механическими характеристиками.

При возведении односторонних железобетонных пилястр требуется устройство вертикальных штраб, в полости которых устанавливают анкерные устройства. К последним осуществляется крепление арматурного каркаса. После его размещения производится установка опалубки. Она выполняется из отдельных фанерных щитов, объединенных хомутами и прикрепляемых к стене с помощью анкеров. Мелкозернистая бетонная смесь нагнетается с помощью насосов поярусно через отверстия в опалубке. Подобная технология применяется при двустороннем устройстве пилястр с той разницей, что процесс крепления щитов опалубки осуществляется с помощью болтов, перекрывающих толщину стены.

5.34. Несущая способность существующих каменных конструкций (столбов, простенков, стен и др.) может оказаться недостаточной при реконструкции зданий, надстройках, а также при наличии дефектов в кладке. Одним из наиболее эффективных методов повышения несущей способности существующей каменной кладки является включение ее в обойму. В этом случае кладка работает в условиях всестороннего сжатия, что значительно увеличивает ее сопротивляемость воздействию продольной силы.

Применяются три основных вида обойм: стальные, железобетонные и армированные растворные.

Основными факторами, влияющими на эффективность обойм, являются: процент поперечного армирования обоймы (хомутами), марка бетона или штукатурного раствора и состояние кладки, а также схема передачи усилия на конструкцию.

С увеличением процента армирования хомутами прирост прочности кладки растет непропорционально, а по затухающей кривой.

Опытами установлено, что кирпичные столбы и простенки, имеющие трещины, а затем усиленные обоймами, полностью восстанавливают свою несущую способность.

5.35. Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам усиливаемого элемента, и хомутов из полосовой стали или круглых стержней, приваренных к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения и не свыше 50 см (черт. 15, а). Стальная обойма должна быть защищена от коррозии слоем цементного раствора толщиной 25-30 мм. Для надежного сцепления раствора стальные уголки закрываются металлической сеткой.

5.36. Железобетонная обойма выполняется из бетона марок 150-200 с армированием вертикальными стержнями и сварными хомутами. Расстояние между хомутами должно быть не свыше 15 см. Толщина обоймы назначается по расчету и принимается от 6 до 10 см (черт. 15,б).

5.37. Обойма из раствора армируется аналогично железобетонной, но вместо бетона арматура покрывается слоем цементного раствора марки 50-100 (черт. 15, в).

Черт. 15. Схема усиления кирпичных столбов обоймами.

а - металлической; б - железобетонной; в - армированной штукатуркой; 1 – планка f 1 сечением 35´5 - 60´12 мм; 2 - сварка; 3 - стержни диаметром 5-12 мм; 4 - хомуты диаметром 4-10мм; 5 - бетон класса В7,5 -В15; 6 - штукатурка (раствор марки 50-100)

5.38. Расчет конструкций из кирпичной кладки, усиленной обоймами, при центральном и внецентренном сжатии при эксцентриситетах, не выходящих за пределы ядра сечения, производится по формулам:

при стальной обойме

при железобетонной обойме

при армированной растворной обойме

. (73)

Коэффициенты y и h принимаются при центральном сжтии y = 1 и h = 1; при внецентренном сжатии (по аналогии с внецентренно сжатыми элементами с сетчатым армированием):


В формулах (71) - (75):

N - продольная сила;

А - площадь сечения усиливаемой кладки;

A¢ s - площадь сечения продольных уголков стальной обоймы или продольной арматуры железобетонной обоймы;

А b - площадь сечения бетона обоймы, заключенная между хомутами и кладкой (без учета защитного слоя);

R sw - расчетное сопротивление поперечной арматуры обоймы;

R sc - расчетное сопротивление уголков или продольной сжатой арматуры;

j - коэффициент продольного изгиба (при определении j значение a принимается как для неусиленной кладки);

m g - коэффициент, учитывающий влияние длительного воздействия нагрузки, пп.;

m k - коэффициент условий работы кладки, принимаемый равным 1 для кладки без повреждений и 0,7 - для кладки с трещинами;

m b - коэффициент условий работы бетона, принимаемый равным 1 - при передаче нагрузки на обойму и наличии опоры снизу обоймы, 0,7 - при передаче нагрузки на обойму и отсутствии опоры снизу обоймы и 0,35 - без непосредственной передачи нагрузки на обойму;

m - процент армирования хомутами и поперечными планками, определяемый по формуле

, (76)

где h и b - размеры сторон усиливаемого элемента;

s - расстояние между осями поперечных связей при стальных обоймах (h ³ s £ b, но не более 50 см) или между хомутами при железобетонных и штукатурных обоймах (s£15 см).

5.39. Расчетные сопротивления арматуры, применяемой при устройстве обойм, принимаются по табл.10.

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

УСИЛЕНИЕ КИРПИЧНЫХ ПРОСТЕНКОВ


I. ОБЩИЕ УКАЗАНИЯ

Работы по усилению кирпичных простенков и столбов выполняются в соответствии с настоящей технологической картой; последняя составлена для следующих вариантов проектного решения:

а) устройство металлического каркаса (рис.1);

Рис.1. Усиление кирпичного простенка устройством металлического каркаса.

б) устройство железобетонной обоймы (рис 2);

Рис.2. Усиление кирпичного простенка железобетонной обоймой
а - без увеличения сечения простенка; б-с увеличением сечения простенка

в) перекладка всего простенка или его части (рис.3, а - б).

Рис.3.Усиление кирпичного простенка путем его перекладки

а - полной; б - частичной

До начала работ по усилению простенков и столбов должны быть устранены причины, вызвавшие деформацию этих конструктивных элементов.

II. ПРИЕМЫ И СРЕДСТВА ПРОИЗВОДСТВА РАБОТ

1. Усиление кирпичных простенков и столбов состоит из следующих операций:

а) Демонтаж оконных заполнений.

б) Устройство временных креплений и предохранительного козырька или наружных (выпускных) лесов.

Временные крепления, предохранительный козырек и выпускные леса устраивать по конструктивной схеме показанной на рис.4. При наличии соответствующих указаний в проекте, а также во всех случаях перекладки (простенков, столбов и ремонте элементов в этих конструкциях), связанной с ослаблением сечения кладки при разборке более чем на 25%, производить вывешивание вышележащих конструкций перекрытий здания (рис.5), передающих нагрузку на перекладываемый простенок.

Рис.4. Схема устройства временных креплений перемычек и устройства выпускных лесов при перекладке простенков

Рис.5. Вывешивание балок перекрытия, опирающихся на перекладываемый простенок

Наружные (выпускные) леса для выполнения работ по устройству металлических каркасов и железобетонных обойм устанавливать, если эти работы невозможно вести с автовышек или передвижных лесов башенного типа.

в) Отбивка штукатурки со всей поверхности подлежащего усилению простенка.

г) Пробивка отбойными молотками борозд, отбивка четвертей (при установке металлического каркаса), срубка кирпичной кладки по периметру простенка (при устройстве железобетонной обоймы), разборка кирпичной кладки (при перекладке простенка).

Работы с отбойными молотками выполнять с осторожностью, непрерывно наблюдая за состоянием деформированных конструкций и временных креплений. При слабой (сильно деформированной) кладке пневматический инструмент для разборки не применять.

д) Сверление сквозных отверстий и установка стяжных болтов при выполнении работ по усилению простенков каркасами (при соотношении - b/d>1,5) и обоймами. Сверление отверстий выполнять с помощью электродрели.

е) Устройство металлического каркаса или железобетонной обоймы.

При монтаже металлического каркаса отдельные элементы (стойки и поперечные планки) в процессе установки прихватывать электросваркой с последующей обваркой швов по контуру.

Отбитые при установке каркаса кирпичные четверти у простенков наружных стен восстанавливать путем устройства опалубки и бетонирования.

При устройстве железобетонной обоймы опалубку устанавливать в соответствии с рис.6. После установки арматуры и первого яруса щитов опалубки произвести укладку бетона с тщательным уплотнением. Затем установить следующий ярус щитов и т. д.

Рис.6. Установка опалубки при усилении простенка железобетонной обоймой

ж) Новая кирпичная кладка простенка (после разборки старой кладки).

При частичной перекладке сохранять систему перевязки, принятую при кладке сохраняемой части простенка, обеспечить надежную связь новой кладки с сохраняемой путем устройства горизонтальных штраб или забивки металлических штырей. Кладку простенка выполнять с инвентарных подмостей на металлических или деревянных стойках.

з) Распалубка монолитных железобетонных конструкций (при устройстве железобетонных обойм).

и) Разборка временных креплений и подмостей.

Допускается разборка креплений через 7 дней после перекладки простенков на растворе М25 и более.

Рис.7. Общая схема организации работ по перекладке простенка

1 - подмости; 2 - предохранительный козырек; 3 - кран "в окно"; 4 - кирпич; 5 - раствор; б - каменщик; 7 - подсобный рабочий.

Примечание . Приведенные данные действительны при температуре наружного воздуха не ниже +10°; при температуре наружного воздуха от +5 до +10° указанные сроки следует увеличивать на 20%, а при температуре от 1° до +5°-на 40%.

2. Общая схема организации работ по усилению кирпичного простенка (путем перекладки) показана на рис.7

3. При разборке кладки простенков годный для дальнейшего употребления кирпич отсортировать, очистить от раствора, сложить на рабочем месте и использовать при возведении простенка вновь.

4. Работы по усилению кирпичных простенков выполнять звеньями в составе:

1 плотника и 1 электросварщика - при устройстве металлического каркаса;

1 плотника и 1 арматурщика-при устройстве железобетонной обоймы;

1 каменщика и 1 подсобного рабочего-при перекладке простенка.


КОНТРОЛЬ КАЧЕСТВА РАБОТ

Тычковые ряды в кладке необходимо укладывать из целых кирпичей и камней всех видов.

Независимо от принятой системы перевязки швов укладка тычковых рядов является обязательной в нижнем (первом) и верхнем (последнем) рядах возводимых конструкций, на уровне обрезов стен, в выступающих рядах кладки (карнизах, поясах и т. д.), под опорные части балок, прогонов, плит, перекрытий, балконов, под мауэрлаты и другие сборные конструкции является обязательной. При однорядной (цепной) перевязке швов допускается опирание сборных конструкций на ложковые ряды кладки.

Кирпичные простенки шириной в два с половиной кирпича и менее, рядовые кирпичные перемычки и карнизы следует возводить из отборного целого кирпича.

Применение кирпича-половняка допускается только в кладке забутовочных рядов и мало нагруженных участков стен под окнами в количестве не более 10%.

При вынужденных разрывах кладку необходимо выполнять в виде наклонной или вертикальной штрабы. При выполнении разрыва кладки вертикальной штрабой кладку следует армировать с расстоянием до 1,5м по высоте кладки, а так же на уровне каждого перекрытия.

При поперечном армировании простенков сетки следует изготовлять и укладывать так, чтобы было не менее двух арматурных стержней, выступающих на 2-3 мм на внутреннюю поверхность простенка.

Приемку выполненных каменных конструкций следует производить до оштукатуривания поверхностей.

При возведении каменных стен следует освидетельствовать скрытые работы с составлением актов на:

Армирование стен;

Места опирания несущих сборных элементов;

Закрепления в кладке карнизов, балконов;


ТЕХНИКА БЕЗОПАСНОСТИ

До начала работы каменщик обязан:

а) получить от мастера инструктаж о безопасных методах, приемах и последовательности выполнения производственного задания, а также об оградительных устройствах и подмостях, предназначенных для выполняемых работ;

б) осмотреть рабочее место и проверить правильность размещения материалов;

в) убедиться в исправности инвентаря, инструментов, приспособлений и устройств, которыми приходится пользоваться во время работы, и при обнаружении какой-либо неисправности сообщить мастеру;

г) осмотреть установленные для производства работ леса и подмости и в случае обнаружения каких-либо дефектов или недоделок сообщить мастеру;

д) при работе в закрытом помещении - убедиться в достаточности освещения;

е) проверить наличие наружных защитных козырьков и ограждений оконных и дверных проемов, отверстий в настилах и перекрытиях,

ж) при работе внутри действующего цеха (если над рабочим местом каменщика производится какая-либо работа или поблизости проходят краны) проверить, имеются ли необходимые оградительные и защитные устройства.

2. После окончания работы каменщик обязан:

а) убрать со стены оставшиеся кирпичи и инструмент, очистив его от раствора;

б) очистить и привести в порядок рабочее место и проходы;

в) при работе на высоте спускаться вниз только по стремянкам или капитальным маршевым лестницам. Пользоваться приставными лестницами или грузовыми подъемниками для спуска вниз категорически запрещается;

г) спецодежду сдать: сухую - в гардероб, а мокрую - в сушилку.

Меры безопасности при перекладке простенка.

3. Кирпич следует располагать вдоль возводимого здания на поддонах в зоне действия крана.

4. Перекладку простенка зданий нужно производить только с перекрытия или с правильно установленных подмостей или лесов (внутренних или наружных).

5. На промышленном строительстве перекладку простенка необходимо вести с трубчатых или других лесов, устанавливаемых снаружи или внутри здания.

6. На жилищном строительстве перекладку следует вести с внутренних подмостей, переставляемых с одного этажа на другой.

7. Устраивать подмости на случайных опорах (бочках, ящиках, кирпичах и т. п.) запрещается.

8. При недостаточной ширине настила и отсутствии ограждений, а также на подмостях, концы досок которых оставлены на весу, работать не разрешается. Рабочий настил должен быть ровным и не прогибаться от ходьбы по нему.

9. Одним из основных условий безопасности работы каменщика является рациональная организация его рабочего места, предусматривающая следующие требования:

а) применение правильно устроенных инвентарных подмостей, проверенных перед работой мастером;

б) правильное распоряжение кирпича и раствора;

в) чистота и порядок на рабочем месте.

10. Подмости, на которых размещают материалы, при кирпичной кладке должны быть шириной не менее 2,4 м. Площадь настила в этом случае делится на три зоны: рабочую (шириной 50-60 см, примыкающую к выкладываемой стене), складирования материалов (шириной 80-90 см), транспортирования материалов и прохода рабочих (шириной 1-1,1 м).

11. При ленточной установке подмостей необходимо устраивать у края настила ограждения (перила) высотой не ниже 1 м, состоящие из стоек и трех горизонтальных досок: перильной, средней и нижней (бортовой), прикрепляемых с внутренней стороны стоек.

Бортовая доска должна быть высотой не менее 15 см. На трубчатых лесах перильную и среднюю доску можно заменить трубами.

12. Леса и подмости нельзя перегружать материалами и захламлять отходами.

В целях предупреждения перегрузки рабочих настилов на видных, местах должны быть вывешены схемы-плакаты с указанием расположения, количества и емкости пакетов с кирпичом и ящиков с раствором. Нагрузка на настил подмостей и лесов допускается не более 250 кг/м.

13. При пакетной подаче кирпича на поддонах захваты должны иметь ограждения.

14. Работать и ходить на выкладываемой стене запрещается.

При толщине стены в 3 кирпича и более, а также при далеко выступающих наружных пилястрах, когда каменщик не может их выполнить с внутренних подмостей, и вынужден находиться на стене, он должен работать с предохранительным поясом, привязанным к надежным частям здания.

15. Каждый ярус стены необходимо выкладывать так, чтобы уровень стены после каждого перемащивания рабочего настила был на 2-3 ряда кирпича выше настила.

С одного яруса настила каменщик может возводить кладку на высоте не более 1,1-1,2 м. Нижние пять и верхние три ряда в ярусе кладки являются наиболее трудоемкими, так как каменщику приходится работать в неудобном согнутом или вытянутом положении.

Самым удобным и безопасным для работы уровнем кладки является 0,3-0,9 м от рабочего настила. Поэтому наиболее удобными подмостями для кирпичной кладки являются подъемные, дающие возможность поддерживать указанный уровень настилов.

16. Щель, оставляемая между стеной и настилом для провески кладки, должна быть не более 5 см. Необходимо следить за тем, чтобы через щели не падали никакие предметы.

17. Вести кладку стен при расположении настила подмостей выше укладываемых рядов кирпичной кладки категорически запрещается.

18. При нарушении принятого порядка производства работ и обнаружении дефектов в лесах, подмостях и защитных козырьках необходимо немедленно сообщить об этом мастеру или производителю работ и прекратить работу до получения указания о возможности ее продолжения.

19. В зимнее время необходимо:

а) рабочее место постоянно очищать от снега и наледи;

б) при кладке стен способом замораживания применять более прочные растворы, приготовленные с подогревом воды;

в) с наступлением оттепели следить за состоянием выполненной методом замораживания каменной кладки и в случае неравномерной осадки принимать меры против ее обрушения;

г) при прогреве кирпичной кладки паром остерегаться ожогов;

д) при работе в тепляках следить за тем, чтобы нагревательные приборы перед эксплуатацией были испытаны пробной топкой.

20. При обогревании тепляка печами дым следует отводить отдельными трубами. Воспрещается отапливать тепляки различного рода жаровнями, а также применять для растопки керосин, бензин и т. д.

21. При выполнении кирпичной кладки способом электропрогрева должны быть установлены ограждения и предупредительные надписи, запрещающие доступ посторонним на обогреваемые участки.

Работа с применением электропрогрева требует особой осторожности.

Участок кладки, находящийся под электропрогревом, должен находиться под непосредственным наблюдением дежурного электромонтера.

23. Включение электротока для прогрева каменной кладки производится только после окончания работы каменщиков.

График выполнения работ приведен в таблице 1.


График выполнения работ

Таблица 1

Состав работ

Единица измерения

Объем работ

Трудо-
емкость в чел.-ч. по ЕНиР

Состав звена

Почасовой график работ

профессия

количество

Рабочие смены

Установка временных креплений

1 м стойки

Плотники
IV разряда
II разряда

Устройство выпускных лесов

Плотники
IV разряда
II разряда

Разборка кирпичной кладки

Каменщик III разряда

Кирпичная кладка простенка

Каменщик
III разряда
Подсобный рабочий II разряда

Разборка временных креплений и выпускных лесов

Плотники
IV разряда II разряда

Калькуляция трудовых затрат приведена в таблице 2.


Калькуляция трудовых затрат

Таблица 2

Основание к принятым нормам по ЕНиР

Состав работ

Единица измерения

Объем работ

Норма времени в чел.-ч.

Состав звена

Расценка в руб.

Количество чел.-ч. на весь объем работ

Стоимость всего объема работ в руб.

Установка временных креплений из деревянных стоек на клиньях

1 м стойки

Плотники
III разряда - 1
II разряда - 1
Такелажники
II разряда - 2

6-1-20,
п. п. 1,2

Устройство и разборка выпускных лесов

Плотники
V разряда - 1
IV разряда - 1
III разряда - 1
II разряда - 1

20-1-2,
п. 1

Разборка кирпичной кладки простенка отбойным молотком

Каменщик
III разряда - 1

3-1-3,
п. 7, К=1,3

Кирпичная кладка простенка

Каменщики
III разряда - 2

Подъем кирпича краном "в окно"

Машинист
III разряда - 1

(0-44,6)
0-77,7

Подъем раствора краном "в окно"

100 подъемов

Такелажники
II разряда - 2
Машинист
III разряда - 1

(23-40)
40-70

20-1-55,
п. 3

Разборка временных деревянных стоек из бревен

Плотники
IV разряда - 1
II разряда - 1

Итого:
без трудозатрат машинистов
с трудозатратами машинистов

31,12
(32,16)

13-13
(13-57)

График выполнения работ и калькуляция трудовых затрат составлены для случая усиления кирпичного простенка путем его полной перекладки.

III. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Трудоемкость работ на 1 м перекладываемого простенка 2,6 чел.-дня

Стоимость трудозатрат на 1 м по ЕНиР 7-80

IV. МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ РЕСУРСЫ

4.1. Потребность в механизмах, инструментах и приспособлениях приводится в таблице 3 (на усиление(перекладку) одного простенка).

Компрессорная станция

Ящик для раствора емкостью 0,12 м

Кельма комбинированная

Ковш-лопата

Молоток-кирочка

Отвесы весом 400 и 600 г

Уровни строительные

Метр складной

Шнур 3 мм для причалки

Молотки плотничные

Топоры плотничные

Молотки отбойные ОМСП-5

Подмости инвентарные

Электронный текст документа подготовлен
ЗАО "Кодекс" и сверен по:
Общероссийский общественный фонд
"ЦЕНТР КАЧЕСТВА СТРОИТЕЛЬСТВА"

г. Санкт-Петербурга

Простенок - участок стены между смежными дверными или оконными проемами, расположенными на одном уровне. Состояние простенков играет большую роль в надежности и безопасности здания. Однако, как и любая строительная конструкция, с течением времени, а также под воздействием механических факторов, простенки могут ветшать и изнашиваться. Исправить ситуацию поможет усиление строительной конструкции.

В каких случаях требуется усиление простенков?

Усиление простенков требуется при частичной потере несущей способности стен , которая может возникнуть в следующих случаях:

  • низкое качество проектирования;
  • неправильная или небрежная эксплуатация;
  • конструктивные либо производственные ошибки;
  • перегрузка простенков;
  • неравномерные осадки грунтов;
  • перепады температур;
  • низкое качество материалов, применяемых при строительстве.

Следствием каждой из причин становится перегрузка рабочих сечений кладки, либо внецентренно обжатых, либо многократно сокративших несущую способность, например, при расслоении конструкции на отдельные гибкие элементы. В конечном счете, это может привести к разрушению здания.

Усиление простенков: традиции и инновации

Чтобы до минимума сократить риск разрушения здания и сохранить его надежность и безопасность, простенки необходимо усилить. Существуют различные способы и методы усиления простенков, которые можно условно разделить на две группы - традиционные и инновационные.

Традиционные способы усиления простенков

К традиционным способам усиления простенков относятся:

  • применение стальных обойм, хомутов;
  • устройство металлического или железобетонного сердечника;
  • устройство кирпичной обоймы либо железобетонной обоймы;
  • устройство армированной растворной обоймы;
  • разгрузка с последующей заменой простенка;
  • усиление путем накладывания поясов из металлических уголков;
  • устройство накладных поясов из швеллеров;
  • частичное или полное заполнение проемов кирпичной кладкой.

Традиционные методы усиления простенков, в целом, достаточно эффективны, однако, в некоторых случаях их применение недопустимо. После применения описанных выше методов меняется внешний облик сооружения, а это неприемлемо при ремонте зданий, представляющих историческую ценность, для которых сохранение внешнего вида является определяющим фактором.

Основным преимуществом приведенных методов является их относительная простота и невысокая стоимость применяемых материалов (хотя, например, при применение метода усиления путем замены простенка требуются дополнительные затраты на трудоемкие работы по устройству разгрузки). При обустройстве стальных обойм (при установке их на наружных стенах) возникает опасность появления мостиков холода, что влечет за собой дополнительные затраты на теплоизоляцию.

Инновационный метод усиления простенков

Наиболее универсальным и надежным способом усиления строительных конструкций является усиление путем применения углеволокна . Этот инновационный материал обладает уникальными свойствами: необычайная прочность (в 2 раза прочнее стали), легкость (в 4 раз легче стали), высокая термостойкость, нетоксичность.

Метод усиления простенков путем применения углеволокна заключается в наклейке на поверхность конструкций высокопрочных холстов с применением специального эпоксидного клея либо клея на основе микроцемента. После проведения ремонта по данной технологии несущая способность стен может быть увеличена почти в 2 раза по сравнению с эталоном, а прочность кладки при сжатии увеличивается примерно в 2-2,4 раза!

Недостатком углеволокна можно назвать его достаточно высокую стоимость по сравнению с традиционными строительными материалами. Однако, затраты на материал компенсируются отсутствием затрат на излишнюю рабочую силу - работы по усилению простенков углеволокном могут быть выполнены одной командой рабочих. Также не потребуются и дорогостоящие сопутствующие работы, которые неизбежно будут при применении традиционных технологий.

Усиление простенков углеволокном от компании «СДТ»

ООО «СДТ» работает на строительном рынке более пяти лет и имеет внушительный опыт усиления. Среди объектов, на которых ООО «СДТ» проводило работы по усилению строительных конструкций углеволокном:

  • Деловой центр «Москва-сити»,
  • Клиника им. Мандрыка - Москва, Серебряный пер.,4
  • ФГУП ЦНИИХМ, Москва, ул. Нагатинская, 16 а

Компанию отличает высокая надежность и оперативность, а применение материалов европейского производства гарантирует высокое качество выполненных работ. Обращаясь в ООО «СДТ», вы можете быть уверены в результате и безопасной эксплуатации сооружения еще долгие годы!

Получить квалифицированную консультацию специалистов по усилению простенков углеволокном, ознакомиться с ценами и отзывами клиентов вы можете на официальном сайте строительной компании ООО «СДТ» - sdt-group.ru .