Меню

Пожарный извещатель. Пожарные извещатели – тип, описание Виды пожарных извещателей по принципу действия

Расчет крыши и кровли

Во многом, успех предотвращения пожара зависит от своевременной информированности персонала о потенциальном очаге возгорания, которое необходимо предупредить еще на самой начальной стадии. С помощью датчиков задымления, свидетельствующего о процессах тления, можно не только избежать пожара, но и предотвратить даже минимальную порчу оборудования, так как многие агрегаты или силовые кабели имеют специальную пропитку и покрытие, могущее выделять соответствующий запах и дым при повышении температуры выше нормированной.

Назначение дымового извещателя

Извещатель пожарный дымовой является обязательным компонентом пожарной безопасности. Прибор предназначен для формирования сигнала тревоги о потенциальном месте возгорания, по признаку идущего отсюда дыма. Устанавливается один или несколько, в зависимости от площади помещения и его пожарной категории с присоединением к ПКП и пульту управления.

Дежурный персонал видит срабатывания извещателя в виде мигающего светодиода с генерированием звукового сигнала. Если опционально предусмотрено автоматическое пожаротушение и действует соответствующая установка с задержкой времени, то производится включение модулей пожаротушения. В системах работающих только в режиме сигнализации, дежурный персонал выполняет проверку поступившего сигнала и принимает решение.

Принцип действия и устройство камеры обнаружения дыма

  1. Светоприемник
  2. Светоизлучатель
  3. Рефракционные шторки.

Извещатель пожарный дымовой оптико-электронный имеет в своем составе , полностью закрытую от света, но пропускающую воздух. Попадая в нее, аэрозольные частицы отражают излучение, исходящее от источника света. Электронная схема, контролирующая состояние прибора, фиксирует изменения интенсивности свечения, которое улавливает светоприемник (фотодиод высокой чувствительности) и подает сигнал тревоги. Рефракционные шторки необходимы не только для защиты от света, но и для отсекания частиц пыли.

При проведении техобслуживания оптико-электронных устройств важно производить тщательную очистку прибора, накопление пыли на рефракционных шторках и внутри камеры обнаружения снижают чувствительность извещателя и могут привести к ложным срабатываниям.

По конструкции светоизлучающего элемента оптико-электронные камеры разделяют на светодиодные и, лазерные. В последних, используется ультрафиолетовый лазер, приборы с таким источником излучения более чувствительны, имеют широкий диапазон настроек и защиту от ложного срабатывания.

Ионизационные дымовые извещатели функционируют по другому принципу. В камере обнаружения находятся две пластины, на которые подается напряжение. Между ними установлен источник ионизации. Это может быть радиоактивный изотоп или электроиндукционная катушка. Ионный ток, возникший в камере, существенно понижается, когда в нее проникают микрочастицы дыма.

Однако такие устройства в быту применяются очень редко из-за своего магнитного и радиационного излучения. Их устанавливают в помещениях с ограниченным по времени пребыванием людей.

Устройство и область применения дымовых извещателей

Большинство моделей дымовых извещателей анализируют состав частиц, попадающих в камеру оптико-электронного блока, и при наличии веществ характерных для дыма, потребление тока шлейфом увеличивается, что приводит к срабатыванию сигнализации. Поскольку природа дыма напрямую зависит от типа тлеющего материала, то использование одних и тех же параметров для определения порога срабатывания невозможно. На сегодня разработаны и эксплуатируются сразу , подбор осуществляется индивидуально для каждой системы.

    Извещатель пожарный дымовой линейный – состоит из приемника с излучателем либо приемно-излучающего блока и отражателя. Срабатывание происходит при концентрации дыма на линии между фотоприемником и излучателем, установленными в разных сторонах помещения. Между этими компонентами проходит оптическая связь, сигнал генерируется излучателем, при появлении частиц дыма происходит его ослабление.

    Особенностью линейного извещателя является возможность самотестирования, с указанием сигнала неисправность на ПКП. Эта же особенность является причиной того, что такие извещатели можно включать лишь в знакопеременные шлейфы либо только один линейный извещатель в знакопостоянный шлейф. При несоблюдении этого условия, сигнал пожар будет все время блокироваться сигналом неисправность. Линейные извещатели незаменимы в помещениях с большой площадью и высокими потолками.

    Извещатель пожарный дымовой оптико-электронный – используется для фиксации концентрации дыма в самой первой стадии тления, и способен реагировать, как на светлые дымы появляющиеся при горении текстиля, древесины или бумаги, так и черные, характерные для полимерных материалов. Применяется, на промышленных объектах с наличием взрывоопасных зон, в гражданских строениях, в учреждениях и общественных местах.

    Для подключения к ПКП используется четырехпроводный шлейф – двухпроводная линия питания и два провода для связи. В основе работы оптико-электронного извещателя заложен принцип рассеивания ИК излучения. Источником служит светодиод, а приемником фотодиод. При появлении дыма, оптическая связь между излучателем и приемником нарушается, что приводит к снижению внутреннего сопротивления извещателя и подаче сигнала о задымлении.

    Извещатель пожарный дымовой автономный – это разновидность точечных извещателей, принцип действия основан на проникновении в оптическую камеру частиц дыма. Для питания , устанавливаемые с тыльной стороны корпуса. Применяется для контроля пожарной безопасности в спальных комнатах и других жилых помещениях, где прокладка линий связи и питания может навредить интерьеру, по этой же причине, данные извещатели выполняются в корпусе с декоративным дизайном. Устройство может работать как отдельно, так и в локальной сети в другими либо дополнительно подключаемыми световыми оповещателями.

    Устанавливается устройство на потолке, либо на стене, но как можно ближе к потолку, при обнаружении задымления подается звуковой сигнал.

    Точечные дымовые пожарные извещатели – применяются для контроля отсутствия дыма на небольшой площади, например, в вагонах и способны идентифицировать дым серого спектра, появляющийся на первых стадиях пожара. Принцип действия основан на рассеивании инфракрасного излучения, но при появлении черного дыма корректная работа не гарантируется, так как черный цвет поглощает ИК лучи.

    Точечная конструкция подразумевает создание штепсельного четырехполюсного разъема, от которого прибор отключают, при необходимости периодического обслуживания.

    – это наиболее сложный и дорогостоящий тип извещателя, применяемый на объектах, с высокой концентрацией материальных ценностей, могущих пострадать от пожара, в помещениях с высокоточным оборудованием, а также других местах, где высокая стоимость конструкции и установки себя оправдывают.

    Принцип действия извещателя основан на анализе образцов воздуха с помощью лазерного луча, а особенностью конструкции является система трубок, по которым подается воздух, забираемый в разных зонах помещения, где наиболее вероятны очаги возгорания. Трубки оснащаются различными типами фильтров и подключаются к корпусу устройства.

Какой тип дымового извещателя выбрать?

Для корректной работы , такой элемент, как дымовые выключатели должен подбираться исходя из факторов присутствующих в месте установки. В большинстве случаев, когда речь идет о большом объекте, могут применять сразу несколько типов извещателей, в зависимости от зоны.

Наиболее часто выбирают оптико-электронные, так как они сочетают в себе невысокую стоимость и быструю реакцию на появление дыма, но вместе с тем, они же характеризуются большим током потребления и отсутствием реакции при запыленности, что исключает их установку в промышленных условиях, где пыль присутствует постоянно. Для защиты жилых помещений целесообразно применять точечные или автономные типы извещателей, при этом, подразумевается постоянное присутствие человека в радиусе слышимости подаваемого датчиком сигнала.

Приобрести дымовые извещатели не является проблемой, потребителю предлагаются не только импортные, но и отечественные аналоги противопожарного оборудования, не хуже зарубежного. Даже в оснащении небольшого объекта лучше руководствоваться консультациями специалистов, что поможет избежать неоправданных трат на стадии проектирования и гарантирует устойчивую работу системы.

Введение

Пожарная сигнализация - это комплекс технических средств, предназначенный для обнаружения признаков возгорания на объекте и подачи сигнала тревоги на пульт охраны, а также управление системами оповещения, автоматического тушения пожара и инженерными системами здания. Обычно состоит из приемно-контрольного прибора, соединенного шлейфами с пожарными извещателями (пожарными датчиками) различного типа, установленными по охраняемому объекту, и оповещателями. ПКП осуществляет контроль сопротивления шлейфов и при его значительном изменении выдает сигнал тревоги. Как правило, пожарные извещатели объединены в группы согласно плана защищаемых помещений. Для электропитания пожарной сигнализации используется резервированный источник питания, обычно встроенный в ПКП. Принцип проектирования, монтажа и технического обслуживания пожарной сигнализации основан на требованиях соответствующих нормативных документов, отраслевых и ведомственных стандартов. Материалы и оборудование, применяемые для монтажа пожарной сигнализации, должны быть сертифицированы (иметь пожарные сертификаты).

Пожарный извещатель (пожарный датчик) - это электрическое или электромеханическое устройство, предназначенное для фиксирования признаков возгорания (повышение температуры, задымленность, появление огня) на защищаемом объекте и подачи сигнала тревоги путем изменения внутреннего сопротивления извещателя. Извещатели бывают различных типов. Выбор типа, марки, количества, месторасположения извещателей в системах пожарной сигнализации производится исходя из конкретных целей, условий эксплуатации, требований нормативной документации.

Цель работы: анализ и поиск оптимальных средств противопожарной защиты в университете для коридора корпуса «Д»

Классификация пожарных извещателей

Пожарные извещатели делятся на:

1. дымовые извещатели, которые в свою очередь делятся на:

a) оптико-электронные точечные дымовые извещатели;

b) автономные оптико-электронные дымовые извещатели.

2. тепловые точечные пожарные извещатели, подразделяющиеся на: a) тепловые максимальные извещатели; b) тепловые максимально-дифференциальные извещатели.

3. acпиpaциoнныe дымoвыe пoжapныe извещатели;

4. линeйныe извещатели: a) линейные дымовые извещатели; b) линейные тепловые извещатели (термокабель).

5. извещатели открытого пламени;

6. ионизационные пожарные извещатели делятся на: a) радиоизотопные пожарные извещатели; b) электроиндукционные пожарные извещатели;

7. ручные пожарные извещатели

8. комбинированные (совмещенные) пожарные извещатели.

Оптико-электронные точечные дымовые извещатели являются наиболее распространенным типом применяемых извещателей в пожарной сигнализации. Принцип действия извещателей основан на периодическом контроле оптической плотности окружающей среды в дымовой камере извещателя и сравнением ее с пороговым значением. При увеличении оптической плотности воздуха в камере, внутреннее сопротивление извещателя скачкообразно падает, что является сигналом тревоги для ПКП. Применяются в тех случаях, когда предполагается возникновение большого количества дыма при возможном возгорании. Монтаж и техническое обслуживание извещателей производится согласно руководству по эксплуатации, проекта и требований нормативных документов.

Рис. 1.

В свою очередь точечные дымовые датчики делятся на два типа:

a) С естественной циркуляцией воздуха

b) С принудительной циркуляцией воздуха

Чувствительность линейных дымовых датчиков ниже, чем у точечных дымовых датчиков. Автономные оптико-электронные дымовые извещатели нe нужнo пoдключaть к cиcтeмe пожарной сигнализации, oни paбoтaют oт встроенного источника питания и caми пoдaют тpeвoжный cигнaл. Еcли в пoмeщeнии, гдe нaxoдитcя дaтчик в мoмeнт eгo cpaбaтывaния ктo-тo ecть - тo cигнaл будeт уcлышaн. Данный тип пожарных извещателей малоэффективен. У бaтapeйки пepиoдичecки иcтeкaeт cpoк cлужбы, и ee нeoбxoдимo мeнять. Сaми дaтчики нуждaютcя в квaлифициpoвaннoм oбcлуживaнии, инaчe нaчинaютcя лoжныe cpaбaтывaния. Автoнoмныe извeщaтeли нe пoдключeны к cиcтeмe пoжapнoй cигнaлизaции, следовательно пpи oтcутcтвии в пoмeщeнии чeлoвeкa, cигнaл o вoзгopaнии не имеет никакого смысла. В настоящее время такие извещатели устанавливаются в пoмeщeния квapтиp oбычныx дoмов. Тепловые максимальные извещатели в системах пожарной сигнализации регистрируют повышение температуры выше заданного порога в защищаемом помещении. Принцип их действия основан на изменении электрического сопротивления при переходе в жидкое состояние из твердого легкоплавкого сплава во время нагревания. Их установка производится в тех случаях, когда предполагается повышение температуры при начальном этапе возможного возгорания. Монтаж и техническое обслуживание извещателей производится согласно паспорту на извещатель, требований нормативной и проектной документации. Тепловые максимально-дифференциальные извещатели фиксируют не только изменение темепературы выше заданного порога в защищаемом помещении, но и скорость ее повышения. Монтаж и техническое обслуживание извещателей производится согласно руководству по экплуатации, требований проектной и нормативной документации.

Рис. 2.

возгорание пожарный извещатель тревога

Аcпиpaциoнныe дымoвыe пoжapныe извещатели состоят из системы воздуховодов с отверстиями для забора воздуха и центрального блока, с вентилятором для обеспечения потока воздуха и дымовым пожарным извещателем. Система воздуховодов распределена под потолком в защищаемом помещении. С помощью вентилятора воздух засасывается через отверстия в воздуховодах и анализируется в центральном блоке на предмет изменения оптической плотности. Поскольку анализ воздуха в помещении происходит распределенно, то такой извещатель гораздо чувствительней точечного дымового извещателя и позволяет обнаружить пожар на самых ранних этапах возгорания.

Рис. 3.

Линейный дымовой извещатель в пожарной сигнализации представляет из себя оптическую систему из двух пространственно разнесенных блоков: импульсного ИК излучателя и ИК приемника. Расстояние между излучателем и приемником может достигать 100 метров. Излучатель и приемник ориентированы друг на друга. При повышении задымленности в помещении, уровень принимаемых ИК приемником импульсов падает и он отрабатывает сигнал "пожар". Используется такой извещатель для защиты больших площадей с большими зонами просмотра - спортивные залы, торговые центры, стадионы, вокзалы. Монтаж и обслуживание извещателей производится согласно руководству по эксплуатации и требований соответствующей нормативных документов.

Рис. 4.

Линейные тепловые пожарные извещатели дают уникальные преимущества при использовании в местах затрудненного доступа, местах с повышенным загрязнением, пылью, агрессивной или взрывоопасной средой. Состоит из двух (или более) проводников, разделенных теплочувствительной полимерной изоляционной оболочкой. При достижении порогового значения температуры, под действием давления проводников, происходит разрушение оболочки, позволяя проводникам войти в контакт друг с другом.

Извещатели открытого пламени функционируют на принципе регистрации характерных для открытого огня составляющих спектра оптического диапазона фотодиодом извещателя. Их установка производится в тех случаях, когда на раннем этапе возгорания ожидается большое количество пламени. Монтаж и обслуживание извещателей производится согласно техническому описанию и требований нормативной документации.

Рис. 5.

Радиоизотопный пожарный извещатель - это дымовой пожарный извещатель, который срабатывает вследствие воздействия продуктов горения на ионизационный ток внутренней рабочей камеры извещателя. Принцип действия радиоизотопного извещателя основан на ионизации воздуха камеры при облучении его радиоактивным веществом. При введении в такую камеру противоположно заряженных электродов возникает ионизационный ток. Заряженные частички «прилипают» к более тяжелым частичкам дыма, снижая свою подвижность - ионизационный ток уменьшается. Его уменьшение до определенного значения извещатель воспринимает как сигнал «тревога». Подобный извещатель эффективен в дымах любой природы. Однако наряду с описанными выше достоинствами, радиоизотопные извещатели имеют существенный недостаток, о котором не следует забывать. Речь идет об использовании в конструкции извещателей источника радиоактивного излучения. В связи с этим возникают проблемы соблюдения специальных мер безопасности при эксплуатации, обслуживании, хранении и транспортировке, а также утилизации извещателей после окончания срока эксплуатации. Эффективен для обнаружения возгораний сопровождающихся появлением так называемого "черного" дыма, характеризующимся высоким уровнем поглощения света.

Рис. 6.

Электроиндукционные пожарные извещатели работают на следующем принципе: аэрозольные частицы засасываются из окружающей среды в цилиндрическую трубку (газоход) при помощи малогабаритного вентилятора и попадают в зарядную камеру. Здесь, под воздействием униполярного коронного разряда, частицы приобретают объемный электрический заряд и, двигаясь далее по газоходу, попадают в измерительную камеру, где наводят на ее измерительном электроде электрический сигнал, пропорциональный объемному заряду частиц и, следовательно, их концентрации. Сигнал с измерительной камеры анализируется блоком обработки и при превышении заданного порога формирует сигнал "пожар" в виде замыкания контактов реле. Монтаж извещателей производится согласно техническому описанию, проекту и требований нормативной документации.

Рис. 7.

Газовые пожарные извещатели реагирует на газы, выделяющиеся при тлении или горении материалов. Газовые извещатели могут реагировать на оксид углерода (углекислый или угарный газ), различные углеводородные соединения. Принцип действия основан на применении химических сенсоров, изготовленных на основе металлооксидных полупроводников.

Рис. 8.

Ручные пожарные извещатели (ИПР) используются для принудительного запуска пожарной автоматики (оповещения, блокировки инженерных систем здания) при визуальном обнаружении возгорания. Конструктивно извещатель собран на базе геркона или микропереключателя, соединенного с подвижным элементом ручного пожарного извещателя. Выбор мест для установки извещателя производится на основе требований соответствующей нормативной документации.

Рис. 9.

Ионизационные извещатели. Под действием электрического поля, образующиеся положительные и отрицательные ионы создают ток, значение которого постоянно контролируется. При поступлении в чувствительную камеру дыма происходит уменьшение тока из-за объединения части ионов на поверхности частиц дыма. При снижении тока до порогового уровня происходит активизация датчика.

Рис. 10.

Общая характеристика ионизационных извещателей:

a) Возможность обнаружения возгораний во взрывоопасных зонах.

b) Высокая чувствительность извещателей обеспечивает раннее обнаружение дыма, что при практически нулевой вероятности ложной тревоги, определяет более высокую, по сравнению с аналогами, эффективность работы всей системы пожарной сигнализации.

c) Отсутствие влияния запыления дымовой камеры на чувствительность извещателя.

d) Отсутствие зависимости чувствительности извещателя от "цвета" дыма. Комбинированные (совмещенные) извещатели конструктивно объединяют в одном корпусе тепловой и дымовой извещатель. Формирование сигнала "пожар" происходит при анализе совокупности сигналов этих двух извещателей. Монтаж извещателей производится согласно руководству по эксплуатации и требований нормативов.

Рис. 11.

Приемно-контрольный прибор или прибор приемно-контрольный охранно-пожарный является законченным электронным устройством и предназначен для опроса состояний подключенных к нему пожарных шлейфов, снабженных пожарными извещателями, анализа этих состояний и формирования соответствующих сигналов (норма, обрыв, короткое замыкание, пожар, внимание) путем размыкания контактов выходных реле. Также с помощью ПКП осуществляется включение/отключение пожарной сигнализации и подача сигналов на систему оповещения и управления эвакуацией. Задание режимов работы ПКП производится с помощью перестановки соответствующих перемычек на плате ПКП или при помощи программатора. Обычно ПКП снабжен встроенным источником питания с возможностью установки аккумулятора, обеспечивающим функционирование системы пожарной сигнализации при отключении внешней сети 220В. Основным параметром ПКП является количество подключаемых шлейфов пожарной сигнализации. Монтаж, обслуживание, ремонт ПКП производится согласно руководству по эксплуатации, требований проектной и нормативной документации.

Пожарные оповещатели бывают световые, звуковые, речевые и комбинированные. Звуковой оповещатель представляет из себя пьезоэлектрическую сирену или звонок громкого боя. Обычно их громкость составляет 95-113 дБ. Световой оповещатель ("маячок"), установленный на фасаде защищаемого здания, предназначен для контроля состояния пожарной сигнализации и устанавливается на стене охраняемого объекта в месте, удобном для обзора. Также световые оповещатели выполняются в виде светящихся указателей направления движения во время эвакуации и обозначения пожарных выходов. Речевые оповещатели используются в составе блоков речевого оповещения для информирования о возгорании и управления процессом эвакуации.

Источник питания предназначен для подачи питания с необходимыми характеристиками на ПКП, извещатели, оповещатели. Как правило, охранное оборудование питается постоянным напряжением 12В. Обычно источник питания обеспечивает возможность установки в его корпус герметичного аккумулятора и оснащен зарядным устройством для обеспечения бесперебойного электропитания оборудования охранной сигнализации в течении необходимого времени, определяемого требованиями нормативной документации. Такой источник питания называется резервированным источником питания.

Шлейф пожарной сигнализации представляет из себя провод с неподдерживающей горение изоляцией, предназначенный для соединения пожарных извещателей с соответствующими входами ПКП. В один шлейф может включаться несколько пожарных извещателей, количество которых определяется проектом, техническим описанием на ПКП, паспортом на пожарный извещатель и требованиями нормативной документации. Очень часто монтаж пожарной сигнализации происходит с использованием оборудования общего с охранным. Такая сигнализация носит название охранно-пожарной. Обычно такое объединение экономически выгодно и упрощает использование системы в целом.

Системы пожарной сигнализации не могут существовать без чувствительных элементов системы: пожарных извещателей , которые собственно и обнаруживают возгорание.

Вид распознаваемого признака пожара

Пожар можно распознать по разным признакам, и извещатели соответственно есть:

  • дымовые (здесь датчик распознает просачивающийся дым),
  • пламени (извещатель распознает наличие пламени),
  • тепловые (датчик распознает характерное для пожара повышение температуры),
  • газовые (реагирующие на газ) и
  • комбинированные (сочетающие в себе вышеуказанные четыре пункта).

Горение различных материалов проходит по разному: какие-то при высокой температуре горения не выделяют дыма, какие-то, наоборот, выкидывают черные хлопья копоти, а какие-то лишь тлеют, не выказывая пламени. В соответствии с тем, какие материалы находятся на объекте, необходимо ставить извещатели пожарные, классификация которых позволяет обнаруживать соответствующий тип горения.

Дымовые датчики сами по себе подразделяются на ионизационные, оптические и линейные.

Датчики пламени, в свою очередь, делятся на классы с 1-го по 4-й в соответствии с тем, какова дальность обнаружения ими пламени. Класс 4 «видит» пламя в пределах 8 метров вокруг себя, 1-й же класс - в пределах 25 и более метров.

Тепловые датчики делятся на а) максимальные (те, что бьют тревогу при достижении температурой верхнего допустимого порога), б) дифференциальные (те, что реагируют на определенную скорость повышения температуры) и в) максимально-дифференциальные. Также тепловые извещатели классифицируют по скорости их срабатывания.

Существуют также ручные извещатели , которые начинают работать, когда человек, заметивший пожар, нажмет на кнопку или повернет рычаг. В данном случае чувствительным элементом является сам человек, который приводя в действие извещатель сообщает о пожаре системе.

Способ питания

По способу получения электроэнергии пожарные извещатели делятся на :

  • те, что питаются по шлейфу, то есть по общему кабелю вместе с другими приборами сети,
  • те, что питаются по отдельному каналу, и
  • те, что имеют автономное питание.

Выбор способа питания имеет значение, когда на объекте затруднены условия для прокладки кабелей либо когда кабели располагаются в зонах, сильно подверженных воздействию пожара. Владельцу придется выбрать между стоимостью монтажа, красотой интерьера и надежностью сигнализации.

Принцип формирования сигнала

Пожарные извещатели подразделяются на два вида по тому, как именно они узнают об опасности. Это извещатели

  • активные (те, что сами посылают в окружающую среду сигнал, а затем реагируют на его изменение) и
  • пассивные (которые ожидают, пока признак пожара сам достигнет из местоположения).

Возможность определения местонахождения

При пожаротушении иногда очень полезно знать, в какой точке именно произошел пожар, в какой стадии он находится в том или ином помещении, как он распространяется. Определить это помогают адресные извещатели . В противоположность им существуют извещатели безадресные , которые извещают лишь, что пожар в наличии. Разница между такими извещателями в цене и типе установленной системы.

Вид контролируемой зоны

Согласно этой классификации пожарные извещатели делятся на

  • точечные (извещатель , получающий данные в одной точке),
  • линейные (опасность распознается с помощью линии луча между двумя приборами),
  • объемные (контролирующие из места своего нахождения определенный объем пространства) и
  • комбинированные.

При выборе данных извещателей принимается во внимание объем помещения, специфика его конфигурации и некоторые другие факторы, в том числе цена.

Пожарные извещатели (ПИ).

Выбор извещателя в зависимости от типа помещений и условий эксплуатации.

Автоматические пожарные извещатели по типу передачи сигналов делятся:

  • двухрежимные извещатели с одним выходом для передачи сигнала как об отсутствии так и наличии признаков пожара;
  • многорежимные извещатели с одним выходом для передачи ограниченного количества (более двух) типов сигналов о состоянии покоя, пожарной тревоги или других возможных состояний;
  • аналоговые извещатели , которые предназначены для передачи сигнала о величине значения контролируемого ними признака пожара, или аналогового/цифрового сигнала, и который не является прямым сигналом пожарной тревоги.

Условное обозначение пожарных извещателей должно состоять из следующих элементов: ИП Х1Х2Х3-Х4-Х5.

Аббревиатура ИП определяет наименование «извещатель пожарный». Элемент Х1 - обозначает контролируемый признак пожара; вместо Х1 приводят одно из следующих цифровых обозначений:

1 - тепловой;

2 - дымовой;

3 - пламени;

4 - газовый;

5 - ручной;

6…8 - резерв;

9 - при контроле других признаков пожара.

Элемент Х2Х3 обозначает принцип действия ПИ; вместо Х2Х3 приводят одно из следующих цифровых обозначений:

01 - с использованием зависимости электрического сопротивления элементов от температуры;

02 - с использованием термо-ЭДС;

03 - с использованием линейного расширения;

04 - с использованием плавких или сгораемых вставок;

05 - с использованием зависимости магнитной индукции от температуры;

06 - с использованием эффекта Холла;

07 - с использованием объемного расширения (жидкости, газа);

08 - с использованием сегнетоэлектриков;

09 - с использованием зависимости модуля упругости от температуры;

10 - с использованием резонансно-акустических методов контроля температуры;

11 - радиоизотопный;

12 - оптический;

13 - электроиндукционный;

14 - с использованием эффекта «памяти формы»;

15…28 - резерв;

29 - ультрафиолетовый;

30 - инфракрасный;

31 - термобарометрический;

32 - с использованием материалов, изменяющих оптическую проводимость в зависимости от температуры;

33 - аэроионный;

34 - термошумовой;

35 - при использовании других принципов действия.

Элемент Х4 обозначает порядковый номер разработки извещателя данного типа.

Элемент Х5 обозначает класс извещателя .

Выбор типа извещателя , к сожалению, достаточно часто производится исходя из его стоимости, а не по критерию максимального уровня защиты людей от пожара и обеспечения ограничения материальных потерь при защите имущества. Рекомендации, приведенные в нормах, весьма ограниченны и не учитывают современных технологий обнаружения очагов различного типа. Использование традиционных пороговых систем также ограничивает возможности оптимизации характеристик обнаружения. Очевидно, наибольшие возможности по обеспечению раннего обнаружения пожароопасной обстановки при отсутствии ложных тревог имеет адресно-аналоговая система при условии использовании максимального спектра адресно-аналоговых извещателей . В настоящее время широкое применение получили мультисенсорные извещатели (не путать с комбинированными ), например, дымовые и газовые СО-извещатели с тепловым сенсором для корректировки чувствительности, а также дымовые-газовые СО с тепловым сенсором.

ФАКТОРЫ ПОЖАРА

Пожар сопровождается различными процессами, в том числе и имеющими разрушительный характер, такими как обугливание, деформация и растрескивание строительных конструкций, наличием высоких температур и раскаленного ядовитого дыма. Но эти факторы при пожаре проявляются слишком поздно, для того чтобы быть использованными для предотвращения гибели людей или имущества. Цель пожарной сигнализации – обнаружение факторов, которые возникают на ранней стадии развития очага пожара, чтобы было достаточно времени для проведения эвакуации людей и принятия мер для локализации очага и предотвращения дальнейшего развития пожара в разрушительную стадию. К сожалению, не существует единого фактора, который возникал бы на ранней стадии развития всех видов очагов и который мог бы быть использован для создания универсального пожарного детектора. Каждый вид очага сопровождается различными факторами на начальном этапе развития в зависимости от характера продуктов сгорания и условий формирования очага. Могут возникать горящие аэрозоли (сгорание испаренного топлива), частицы дыма, токсичные газы, а также тепло в виде конвективной струи горячих газов при наличии излучаемой составляющей.

ТИПЫ ОЧАГОВ

Возможна классификация очагов в зависимости от окружающей среды, в которой они могут возникнуть, по факторам, которые будут обеспечивать их максимально раннее обнаружение. Так, очаги могут быть разделены на два основных типа – быстрое горение, которое характеризуется появлением огня сразу же после зажигания, и медленное горение, при котором на начальной стадии пламени может не быть совсем, но будет значительное выделение дыма или угарного газа СО . Эти основные виды очагов могут быть далее разделены на типы зажигания, горючесть материала и относительную доступность топлива и кислорода. Быстрые открытые очаги образуют, как правило, аэрозоли, возникает пламя и выделяется тепло. При этом дым, как правило, состоит из невидимых частиц малого размера и может присутствовать в виде дымки над огнем, но бывает и видимым, часто темного цвета, особенно при горении жидких углеводородов или пенопласта.

Медленно горящие-тлеющие очаги, как правило, имеют более высокие уровни видимого дыма, который состоит из частиц большего размера и из токсичных газов с низкими температурами и малых уровней теплового излучения. Дымы могут различаться по цвету, но для большинства тлеющих очагов из твердых углеводородных материалов наиболее вероятно наличие дыма белого цвета на начальном этапе. Описание типов очагов как с быстрым, так и с медленным горением может вводить в заблуждение, поскольку некоторые медленные очаги могут достигать опасных масштабов быстрее, чем быстрые, и они часто могут быть более опасными для жизни из-за высокого уровня токсичных газов. При пожарах в 2011 г. в России вследствие воздействия продуктов горения погибло 8378 человек (70,0% от общего числа погибших), а от воздействия высокой температуры – 898 человек (7,5%) . Таким образом, требуется обеспечить минимальное время обнаружения и быстрых очагов, и медленных. Следует отметить, что реальные очаги, как правило, являются сложными системами, сочетающими в себе элементы обоих типов очагов. Хотя встречаются случаи, когда на ранних стадиях пожара происходит только тление, то для открытых очагов менее вероятно, чтобы огонь быстро не распространился на прилегающий материал, который образует видимый дым и токсичные продукты при горении.

Пожары химических реактивов, которые ограничены одним видом топлива, могут противоречить этим общим закономерностям, например, у фосфора чрезвычайно быстрое горение, и одновременно создается очень плотный белый дым. В подобных случаях необходимо использовать дополнительную информацию для выбора наиболее подходящего типа детектора.

НОРМАТИВНЫЕ ТРЕБОВАНИЯ

Рекомендации по выбору типа извещателя в зависимости от назначения защищаемого помещения и вида пожарной нагрузки приведены в таблице М.1 Приложения М к СП 5.13130.2009 и ограничены тремя типами автоматических извещателей : дымовым, тепловым и пламени. Для большинства помещений указаны 2–3 типа извещателей без указания приоритетов, комментарии для выбора оптимального типа извещателя отсутствуют. Таблица М.1 практически без изменений уже около 30 лет переписывается из исходной таблицы Приложения 3 СНиП 2.04.09-84 в НПБ 88-2003 и далее в СП 5.13130.2009, несмотря на широкий спектр газовых, аспирационных и мультисенсорных извещателей отечественных и зарубежных производителей.

Около 15 лет тому назад были определены здания и помещения, которые должны защищаться только дымовыми извещателями . В приложении А (обязательное) СП 5.13130.2009 сказано: «Здания и помещения, перечисленные в пунктах 3, 6.1, 7, 9, 10, 13 таблицы 1, пунктах 14–19, 26–29, 32–38 таблицы 3, при применении автоматической пожарной сигнализации следует оборудовать дымовыми пожарными извещателями ». Это, во-первых, здания, где необходимо защитить от пожара людей: общежития, специализированные жилые дома для престарелых и инвалидов, здания общественного и административно-бытового назначения, помещения административного и общественного назначения встроенные и пристроенные, здания предприятий торговли и помещения предприятий торговли, встроенные и встроенно-пристроенные в здания другого назначения, выставочные залы и здания выставочных павильонов. Во-вторых, здания с радиоэлектронным оборудованием и средства связи: технические цеха оконечных усилительных пунктов, промежуточных радиорелейных станций, передающих и приемных радиоцентров, аппаратные базовых станций сотовой системы подвижной радиосвязи и аппаратные радиорелейных станций сотовой системы подвижной радиосвязи, помещения главных касс, помещения бюро контроля переводов и зональных вычислительных центров почтамтов, узлов почтовой связи, автозалы АТС, где устанавливается коммутационное оборудование квазиэлектронного и электронного типов совместно с ЭВМ, используемой в качестве управляющего комплекса, устройствами ввода-вывода, помещения электронных коммутационных станций, узлов, центров документальной электросвязи, выделенные помещения управляющих устройств на основе ЭВМ автоматических междугородных телефонных станций, помещения для размещения электронно-вычислительных машин, работающих в системах управления сложными технологическими процессами, связных процессоров (серверные), архивов магнитных и бумажных носителей, графопостроителей, печати информации на бумажных носителях (принтерные) и для размещения персональных ЭВМ на рабочих столах пользователей. В-третьих, архивы и хранилища: помещения хранения и выдачи уникальных изданий, отчетов, рукописей и другой документации особой ценности (в том числе архивов операционных отделов), помещения хранилищ и помещения хранения служебных каталогов и описей в библиотеках и архивах помещения хранения музейных ценностей, помещения обработки, сортировки, хранения и доставки посылок, письменной корреспонденции, периодической печати, страховой почты, помещения (камеры) хранения багажа ручной клади и склады горючих материалов в зданиях вокзалов и аэровокзалов, помещения для хранения горючих материалов или в горючей упаковке при расположении их под трибунами в крытых и открытых спортивных сооружениях, в зданиях крытых спортивных сооружений, помещения производственного и складского назначения, расположенные в научно-исследовательских учреждениях и других общественных зданиях, а также съемочные павильоны киностудий.

Подразумевается, что дымовые извещатели обеспечивают более раннее обнаружение по сравнению с тепловыми извещателями и пламени. Однако их принцип действия и низкие требования ГОСТ Р 53325 по защите от помеховых воздействий определяют большую вероятность ложных тревог, что приводит к необходимости не только дополнительных затрат оборудования, но и значительных затрат времени для повышения достоверности сигналов. Требование обнаружения очага пожара одновременно двумя извещателями , разнесенными на значительное расстояние при работающих системах вентиляции и кондиционирования, весьма проблематично. К тому же до сих пор в нормы не введены требования о необходимости установки канальных дымовых извещателей на вытяжную вентиляцию, в которую уходит большая часть дыма, быстро распространяясь по всему зданию при пожаре. В результате, несмотря на использование дымовых извещателей , раннее обнаружение очагов не обеспечивается.

КЛАССИЧЕСКИЕ ПОЖАРНЫЕ ИЗВЕЩАТЕЛИ

Оптические дымовые извещатели могут работать с использованием эффекта оптического рассеяния дыма или затемнения. На сегодняшний день эффект затемнения используется в линейных дымовых извещателях , а в точечных дымовых извещателях наиболее широко используется эффект рассеяния света. При использовании светодиода и фотодиода ИК-диапазона под определенным углом в дымовой камере эти извещатели эффективны при обнаружении видимых частиц дыма. Невидимые дымы в виде аэрозолей с частицами значительно меньших размеров плохо обнаруживаются оптическими дымовыми детекторами. Уровень рассеивания ИК-излучения на частицах меньшего размера значительно уменьшается. Это означает, что оптические детекторы эффективны только при обнаружении очагов, определенных ранее как медленное горение. С другой стороны, имеется целый класс материалов, например, резина и битумные материалы, которые при горении образуют черный дым, частицы которого также имеют значительно меньше рассеивающих свойств, чем у белого дыма, и обнаружение таких очагов дымовыми оптическими извещателями будет значительно большей эквивалентной оптической плотности по сравнению с белыми дымами.

Принцип действия точечных оптических дымовых извещателей определяет высокую вероятность ложных тревог при наличии в защищаемом помещении пыли, пара, аэрозолей и т. д. Это обстоятельство существенно ограничивает область применения дымовых извещателей , и, несмотря на возможности альтернативных вариантов выбора извещателей , из-за отсутствия рекомендаций производится замена на более дешевые тепловые извещатели , которые значительно снижают уровень пожарной защиты людей и оборудования. По этим же причинам тепловые извещатели широко используются во взрывоопасных зонах, хотя во взрывоопасной обстановке тепловой извещатель вряд ли успеет сработать до взрыва от очага пожара.

Тепловые извещатели по логике работы можно разделить на два типа: максимальные, которые переходят в режим „пожар“ при нагреве сенсора детектора до фиксированной температуры, и дифференциальные, которые переходят в пожар при условии скорости повышения температуры выше определенной величины. Как правило, в тепловых извещателях используется комбинация дифференциального и максимального каналов, что определяет их название как максимально-дифференциальные тепловые извещатели . Такая комбинация позволяет обнаружить пожар при низких температурах, где дифференциальный канал даст сигнал тревоги раньше, чем канал фиксированной температуры. С другой стороны, очевидно, дифференциальный тепловой извещатель не обнаруживает пожар с достаточно медленным нарастанием температуры, в этом случае только тревога по превышению фиксированной температуры обеспечивает обнаружение пожара.

При большинстве пожаров тепловое обнаружение не такое быстрое, как обнаружение дыма, так как на ранней стадии пожары обычно характеризуются меньшим повышением температуры по сравнению с более поздними этапами. Тем не менее, в тяжелых условиях, где присутствуют аэрозоли, пыль, дым или даже экстремальные температуры, исключается возможность использования детекторов дыма для обнаружения пожара. В этих зонах тепловой извещатель может обеспечить приемлемую, хотя и значительно менее чувствительную альтернативу. Тепловые детекторы также используются там, где риск пожара или последствий пожара считается низким, так как тепловые извещатели , как правило, дешевле, чем детекторы дыма.

Извещатели пламени в состоянии обнаружить мерцание инфракрасного излучения, выделяемого пламенем, в контролируемом диапазоне частот. Это в сочетании с использованием узкой оптической полосы пропускания делает извещатель невосприимчивым к источникам помех ИК-диапазона . Эти извещатели достаточно дорогостоящие, по сравнению с дымовыми извещателями . Они не обнаруживают тлеющие очаги, да и пламя они обнаруживают только в прямой видимости, что определяет ограничения в их использовании. С другой стороны, они практически незаменимы при защите открытых площадей и высоких помещений, благодаря высокой чувствительности их дальность достигает 50 м, и при обеспечении широкой диаграммы направленности они позволяют защитить большие площади.

Извещатели газовые СО (угарного газа) работают по принципу окисления газа монооксида углерода до двуокиси углерода. Эта химическая реакция включает в себя несколько стадий, которые происходят на каталитических поверхностях в сенсоре СО . Реакция требует обмена электронами, который создает небольшой электрический ток внутри сенсора. Заход газа в сенсор ограничен для того, чтобы весь угарный газ на поверхности катализатора постоянно окислялся. Это означает, что скорость транспортировки окиси углерода на каталитической поверхности определяется градиентом концентрации между ними и внешней средой. В результате выход сенсора является функцией концентрации окружающей атмосферы, а не концентрацией газа движущегося мимо детектора.

Угарный газ может быть использован для обнаружения большинства типов углеводородных очагов, но его самое большое преимущество обеспечивается при обнаружении медленно развивающихся тлеющих очагов, когда конвекционный поток, поднимающий образующийся дым к детектору, крайне слабый. При этих условиях обычное обнаружение дыма произойдет, когда концентрация ядовитого угарного газа будет опасной для человека. Благодаря высокой мобильности молекул газа угарному газу не требуется потока нагретого воздуха для подъема к детекторам. Распространение монооксида углерода в помещении происходит за счет броуновского движения частиц.

Детекторы угарного газа являются устойчивыми к ложным тревогам и эффективными для обнаружения большинства очагов углеводородов. Но они неприменимы в зонах, где основной опасностью является загорание электрического оборудования. Несмотря на то что при пожарах с участием электрооборудования образуется угарный газ, образование видимых продуктов в процессе горения делает более оптимальным выбор оптических дымовых извещателей или высокочувствительных детекторов дыма. Также в категорию областей, не допускающих использования газовых извещателей СО, относятся помещения, где производится зарядка аккумуляторов, так как это приводит к образованию высокой концентрации водорода, что может привести к ложным тревогам.

В зонах, где основная опасность возникает от легковоспламеняющихся химических веществ, в особенности от жидкого топлива, пожар обычно сопровождается высокими температурами с образованием сильного шлейфа дыма и умеренными уровнями угарного газа. Для защиты от таких пожаров лучше использовать дымовые детекторы либо, если окружающая среда непригодна для эксплуатации детекторов дыма, тогда использовать тепловые детекторы. Предусматривается, что детектор CO не будет использоваться в условиях, где присутствует достаточно высокая концентрация водорода или паров углеводорода. Там, где, вероятно, будет долгосрочное воздействие или высокий уровень воздействия химического вещества, рекомендуется проверять правильность работы детекторов СО до их установки.

Точечный

Извещатель , реагирующий на факторы пожара в компактной зоне.

Многоточечный
Тепловые многоточечные извещатели
- это автоматические извещатели , чувствительные элементы которых представляют собой совоокупность точечных сенсоров дискретно расположенных на протяжении линии. Шаг их установки определяется требованиями нормативных документов и техническими характеристиками, указываемыми в технической документации на конкретное изделие.

Линейный (термокабель )

Существует несколько типов линейных тепловых пожарных извещателей , конструктивно отличающихся друг от друга:

  • полупроводниковый - линейный тепловой пожарный извещатель , у которого в качестве сенсора температуры используется покрытие проводов веществом, имеющим отрицательный температурный коэффициент. Данный вид термокабеля работает только в комплекте с электронным управляющим блоком. При воздействии температуры на любой участок термокабеля изменяется сопротивление в точке воздействия. С помощью управляющего блока можно задать разные пороги температурного срабатывания;
  • механический - качестве сенсора температуры данного извещателя используется герметичная металлическая трубка, заполненная газом, а также датчик давления, подключенный к электронному блоку управления. При воздействии температуры на любой участок сенсорной трубки изменяется внутреннее давление газа, значение которого регистрируется электронным блоком. Данный тип линейного теплового пожарного извещателя многоразового действия. Длина рабочей части металлической трубки сенсора имеет ограничение по длине до 300 метров;
  • электромеханический - линейный тепловой пожарный извещатель , у которого в качестве сенсора температуры используется термочувствительный материал, нанесенный на два механически напряженных провода (витая пара), Под воздействием температуры термочувствительный слой размягчается, и два проводника накоротко замыкаются.

Дымовые извещатели

Дымовые извещатели - извещатели , реагирующие на продукты горения, способные воздействовать на поглощающую или рассеивающую способность излучения в инфракрасном, ультрафиолетовом или видимом диапазонах спектра. Дымовые извещатели могут быть точечными, линейными, аспирационными и автономными.

Применение

Признак, на который реагируют дымовые извещатели - дым. Наиболее распространенный тип извещателя . При защите системой пожарной сигнализации административно-бытовых помещений необходимо использовать только дымовые извещатели . Использование других типов извещателей в административно-бытовых помещениях запрещено. Количество извещателей , защищающих помещение зависит от размеров помещения, типа извещателя , наличие систем (пожаротушения, дымоудаления , блокировки оборудования) которыми управляет пожарная сигнализация. До 70% пожаров возникает из тепловых микроочагов , развивающихся в условиях с недостаточным доступом к ним кислорода. Такое развитие очага, сопровождающееся выделением продуктов горения и протекающее в течение нескольких часов, характерно для целлюлозосодержащих материалов. Обнаруживать подобные очаги наиболее эффективно регистрацией продуктов горения в небольших концентрациях. Это позволяют делать дымовые или газовые извещатели .

Оптические

Дымовые извещатели , использующие оптические средства обнаружения, реагируют по-разному на дым разных цветов. В настоящее время производители предоставляют ограниченную информацию о реакции дымовых извещателей в технических характеристиках. Информация о реакции извещателя включает только номинальные значения реакции (чувствительности) на серый дым, а не чёрный. Часто указывается диапазон чувствительности вместо точного значения.

Точечный

Сработавший дымовой пожарный извещатель (красный светодиод непрерывно горит).

Дымовые извещатели на время проведения ремонта в помещении должны закрываться для избежания попадания пыли. Точечный извещатель реагирует на факторы пожара в компактной зоне. Принцип действия точечных оптических извещателей основан на рассеивании серым дымом инфракрасного излучения. Хорошо реагируют на серый дым, выделяющийся при тлении на ранних стадиях пожара. Плохо реагирует на чёрный дым, поглощающий инфракрасное излучение. Для периодического обслуживания извещателей необходимо разъемное соединение, так называемая «розетка» с четырьмя контактами, к которой подключается дымовой извещатель . Для контроля отключения датчика от шлейфа существуют два отрицательных контакта, которые замыкаются при установки извещателя в розетку. Дымовая камера и электроника точечного дымового извещателя . Во всех точечных дымовых оптических пожарных извещателях ИП 212-ХХ по классификации НПБ 76-98 используется эффект диффузного рассеивания излучения светодиода на частицах дыма. Светодиод располагается таким образом, чтобы исключить прямое попадание его излучения на фотодиод. При появлении частиц дыма часть излучения отражается от них и попадает на фотодиод. Для защиты от внешнего света оптопара - светодиод и фотодиод, размещаются в дымовой камере из пластика чёрного цвета.

Экспериментальные исследования показали, что время обнаружения тестового очага пожара при расположении дымовых извещателей на расстоянии 0,3 м от потолка возрастает в 2..5 раз. А при установке извещателя на расстоянии 1 м от перекрытия можно прогнозировать увеличение времени определения пожара уже в 10..15 раз.

Линейный

Линейный - двухкомпонентный извещатель состоящий из блока приемника и блока излучателя (либо одного блока приемника-излучателя и отражателя) реагирует на появление дыма между блоком приемника и излучателя.

Устройство линейных дымовых пожарных извещателей основано на принципе ослабления электромагнитного потока между разнесенными в пространстве источником излучения и фотоприемником под воздействием частиц дыма. Прибор такого типа состоит из двух блоков, один из которых содержит источник оптического излучения, а другой - фотоприемник. Оба блока располагают на одной геометрической оси в зоне прямой видимости.

Аспирационный

Аспирационный извещатель использует принудительный отбор воздуха из защищаемого объёма с мониторингом ультрачувствительными лазерными дымовыми извещателями обеспечивает сверхраннее обнаружение критической ситуации. Аспирационные дымовые пожарные извещатели позволяют защитить объекты, в которых невозможно непосредственно разместить пожарный извещатель .

Пожарный аспирационный извещатель применим в помещениях архивов, музеев, складов, серверных, коммутаторных помещений электронных узлов связи, центров управления, «чистых» производственных зон, больничных помещений с высокотехнологичным диагностическим оборудованием, телевизионных центров и радиовещательных станций, компьютерных залов и других помещений с дорогостоящим оборудованием. То есть для наиболее важных помещений, где хранятся материальные ценности или где огромны средства, вложенные в оборудование, либо где велик ущерб от остановки производства или прерывания функционирования, либо велика упущенная выгода от потери информации. На таких объектах крайне важно достоверно обнаружить и ликвидировать очаг на самой ранней стадии развития, на этапе тления - задолго до появления открытого огня, либо при возникновении перегрева отдельных компонент электронного устройства. При этом, учитывая, что такие зоны обычно оснащены системой контроля температуры и влажности, в них производится фильтрация воздуха, имеется возможность значительно увеличить чувствительность пожарного извещателя , избежав при этом ложных срабатываний. Недостатком аспирационных извещателей является их высокая стоимость.

Автономный

Автономный - пожарный извещатель , реагирующий на определенный уровень концентрации аэ розольных продуктов горения (пиролиза) веществ и материалов и, возможно, других факторов пожара, в корпусе которого конструктивно объединены автономный источник питания и все компоненты, необходимые для обнаружения пожара и непосредственного оповещения о нём. Автономный извещатель также является точечным.

Ионизационные

Принцип действия ионизационных извещателей основан на регистрации изменений ионизационного тока, возникающих в результате воздействия на него продуктов горения. Ионизационные извещатели делятся на радиоизотопные и электроиндукционные.

Радиоизотопный

Радиоизотопный извещатель - это дымовой пожарный извещатель , который срабатывает вследствие воздействия продуктов горения на ионизационный ток внутренней рабочей камеры извещателя . Принцип действия радиоизотопного извещателя основан на ионизации воздуха камеры при облучении его радиоактивным веществом. При введении в такую камеру противоположно заряженных электродов возникает ионизационный ток. Заряженные частички «прилипают» к более тяжелым частичкам дыма, снижая свою подвижность - ионизационный ток уменьшается. Его уменьшение до определенного значения извещатель воспринимает как сигнал «тревога». Подобный извещатель эффективен в дымах любой природы. Однако наряду с описанными выше достоинствами радиоизотопные извещатели имеют существенный недостаток, о котором не следует забывать. Речь идет об использовании в конструкции извещателей источника радиоактивного излучения. В связи с этим возникают проблемы соблюдения мер безопасности при эксплуатации, хранении и транспортировке, а также утилизации извещателей после окончания срока эксплуатации. Эффективен для обнаружения возгораний, сопровождающихся появлением так называемых «черных» видов дыма, характеризующихся высоким уровнем поглощения света.

Высокая чувствительность позволяет использовать радиоизотопные извещатели как составной компонент аспирационных извещателей . При прокачке через извещатель воздуха защищаемых помещений он может обеспечивать подачу сигнала при появлении даже ничтожного количества дыма - от 0,1 мг/м³. При этом длина трубок для забора воздуха практически не ограничивается. К примеру, практически всегда регистрирует факт воспламенения спичечной головки на входе воздухозаборной трубки длиной 100 м.

Электроиндукционный

Принцип работы извещателя : аэрозольные частицы засасываются из окружающей среды в цилиндрическую трубку (газоход) при помощи малогабаритного электрического насоса и попадают в зарядную камеру. Здесь, под воздействием униполярного коронного разряда, частицы приобретают объемный электрический заряд и, двигаясь далее по газоходу, попадают в измерительную камеру, где наводят на её измерительном электроде электрический сигнал, пропорциональный объемному заряду частиц и, следовательно, их концентрации. Сигнал с измерительной камеры попадает в предварительный усилитель и далее в блок обработки и сравнения сигнала. Датчик осуществляет селекцию сигнала по скорости, амплитуде и длительности и выдает информацию при превышении заданных порогов в виде замыкания контактного реле.

Электроиндукционные извещатели используются в системах пожарной сигнализации модулей «Заря» и «Пирс» МКС.

Извещатели пламени

Извещатель пламени - извещатель , реагирующий на электромагнитное излучение пламени или тлеющего очага.

Извещатели пламени применяются, как правило, для защиты зон, где необходима высокая эффективность обнаружения, поскольку обнаружение пожара извещателями пламени происходит в начальной фазе пожара, когда температура в помещении ещё далека от значений, при которых срабатывают тепловые пожарные извещатели . Извещатели пламени обеспечивают возможность защиты зон со значительным теплообменом и открытых площадок, где невозможно применение тепловых и дымовых извещателей . Извещатели пламени применяются для организации контроля наличия перегретых поверхностей агрегатов при авариях, например, для обнаружения пожара в салоне автомобиля, под обшивкой агрегата, контроля наличия твердых фрагментов перегретого топлива на транспортере.

Газовые извещатели

Газовый извещатель - извещатель , реагирующий на газы, выделяющиеся при тлении или горении материалов. Газовые извещатели могут реагировать на оксид углерода (углекислый или угарный газ), углеводородные соединения.

Проточные пожарные извещатели

Проточные пожарные извещатели применяют для обнаружения факторов пожара в результате анализа среды, распространяющейся по вентиляционным каналам вытяжной вентиляции. Извещатели следует устанавливать в соответствии с инструкцией по эксплуатации этих извещателей и рекомендациями изготовителя, согласованными с уполномоченными организациями (имеющими разрешение на вид деятельности).


Ручные извещатели

Пожарный ручной извещатель - устройство, предназначеннное для ручного включения сигнала пожарной тревоги в системах пожарной сигнализации и пожаротушения. Ручные пожарные извещатели следует устанавливать на высоте 1,5 м от уровня земли или пола. Освещенность в месте установки ручного пожарного извещателя должна быть не менее 50 Лк. Ручные пожарные извещатели должны устанавливаться на путях эвакуации в местах, доступных для их включения при возникновении пожара. В сооружениях для наземного хранения легковопламеняющихся и горючих жидкостей

Дымовой оптико-электронный точечный пожарный извещатель .

По статистике примерно 90% пожаров начинаются с тления материалов, по этому дымовые пожарные извещатели (ИП) в большинстве случаев являются наиболее эффективным средством защиты от пожара. Дымовые пожарные извещатели обнаруживают пожароопасную ситуацию на раннем этапе, при минимальном задымлении в верхней части помещения, и обеспечивают реальную защиту жизни людей и материальных ценностей. По европейским требованиям все помещения защищаются дымовыми извещателями , исключение составляют только зоны с возможным появлением дыма или пара в нормальных условиях. Такое положение обеспечило в Европе и в Америке снижение числа пожаров и человеческих жертв пр имерно в 10 раз по сравнению с Россией. Эффективность дымового извещателя зависит от многих факторов, конечно и от электроники, но его потенциальные характеристиками во многом определяются конструкцией извещателя , формой дымовой камеры , параметрами оптопары , эффективностью экранировки и т.д.

Принцип работы дымового оптико-электронного пожарного извещателя

В дымовых оптико-электронных пожарных извещателях используется эффект рассеяния излучения светодиода на частицах дыма. Подобный эффект возникает при прохождении луча прожектора через облако: в чистой среде луч не видим, а в облаке происходит его рассеяние на частицах влаги, часть излучения отражается в сторону наблюдателя и становится четко видна структура луча. Светодиод и фотодиод располагаются под определенным углом, а перегородка исключает прямое попадание сигналов светодиода на фотодиод (рис. 1 а). При появлении частиц дыма часть излучения отражается от них и попадает на фотодиод (рис. 1 б).

Рис. 1. Принцип действия дымового оптико-электронного извещателя

Для того, чтобы данная модель реализовалась в виде дымового извещателя , необходима сложная конструкция, которая обеспечивает его стабильную работу в реальных условиях. Для защиты от внешнего света оптопара – светодиод и фотодиод, размещаются в дымовой камере. Принцип действия оптико-электронного ПИ определяет сильное влияние на его чувствительность и помехоустойчивость формы дымовой камеры, ее цвета, структуры поверхности, диаграмм направленности светодиода и фотодиода, их взаимного расположения в пространстве.

Для обеспечения эффективной пожарной защиты сигналы о пожароопасной ситуации должны формироваться при сравнительно небольшой концентрации дыма. Чувствительность дымового извещателя - это удельная оптическая плотность среды измеренная в дБ/м или в %/м, при которой формируется сигнал ПОЖАР. Чем меньший уровень оптической плотности среды вызывает его активизацию, тем выше чувствительность. По НПБ 65-97 чувствительность порогового дымового извещателя пожарного (ИП) должна устанавливаться в диапазоне 0,05-0,2 дБ/м, а ее значение должно быть приведено в технической документации на пожарный извещатель . По западным экспериментальным оценкам при удельной оптической плотности дыма 0,2 дБ/м видимость составляет примерно 50 метров, при 0,5 дБ/м - примерно 20 метров, при 1 дБ/м - примерно 10 метров, при 2 дБ/м - примерно 5 метров. При этом надо учитывать, что первоначально слой дыма располагается в верхней части помещения.

При испытаниях по НПБ 65-97 чувствительность дымовых пожарных извещателей должна оставаться в пределах 0,05 - 0,2 дБ/м, при этом отношение максимальной оптической плотности к минимальной не должно превышать:

  • при изменении ориентации к направлению воздушного потока - 1,6 раз;
  • при изменении скорости воздушного потока 0,625 – 1,6 раз;
  • от экземпляра к экземпляру - 1,3 раз;
  • при изменении напряжения питания - 1,6 раз;
  • при изменении температуры окружающей среды до +550С - 1,6 раз,
  • после воздействия повышенной влажности – 1,6 раз.

Однако одновременное воздействие нескольких факторов, что обычно и происходит на практике, может вызвать изменение чувствительности оптико-электронного ИП в широких пределах. К тому же, в процессе эксплуатации происходит уход чувствительности из-за накопления пыли, старения электронных компонентов и т.д. Необходимо так же обеспечить защиту от воздействия искусственного или естественного освещения яркостью до 12000 лк, защиту от влаги, от пыли, от коррозии, от насекомых, от воздействия электромагнитного излучения, от механических воздействий и т.д.

Отсутствие в программе испытаний извещателей при сертификации огневых испытаний по ГОСТ 50898-96, испытаний на коррозионную стойкость, низкие требования по воздействию электромагнитного поля и т.д., позволяют сертифицировать извещатели совершенно не отвечающие современным условиям эксплуатации. Высокая вероятность ложных срабатываний привела в 2003 году к появлению в НПБ 88-2001* п. 13.1* требования о формировании любой команды при срабатывании не менее двух пожарных извещателей . По этой же причине некоторые производители приемно-контрольных приборов ввели режим автоматического сброса первого сообщения о пожаре, что приводит к потере драгоценного времени и только усложняет процедуру выявления неисправного извещателя .

В НПБ 57-97 «Приборы и аппаратура автоматических установок пожаротушения и пожарной сигнализации . Помехоустойчивость и помехоэмиссия . Общие технические требования. Методы испытаний» приведены требования по помехоустойчивости при воздействии электромагнитного поля (табл. 1). Даже для управления АУП по НПБ 88-2001* п. 12.11 пожарные извещатели должны быть устойчивы к воздействию электромагнитных полей со степенью жесткости всего лишь не ниже второй.

Диапазон частот и уровни напряженности электромагнитного поля при испытаниях по НПБ 57-97 не учитывают ни наличие нескольких систем сотовой связи с огромным числом базовых станций и мобильных телефонов, ни увеличения мощности и числа радио и телевизионных станций и т.д. Причем «эффективность» воздействия помех на пожарный извещатель с увеличением частоты возрастает.

По европейским стандартам пожарный извещатель должен выдерживать воздействие электромагнитного поля напряженностью 10 В /м в диапазонах 0,03 – 1000 МГц и 1 – 2 ГГц, и напряженностью 30 В/м в диапазонах сотовой связи 415 – 466 МГц и 890 – 960 МГц. Европейские требования соответствуют современным условиям эксплуатации и в несколько раз превышают требования даже по самой высокой 4-й степени жесткости по НПБ 57-97. Кроме того, обязательными являются испытания на влагу сначала при постоянной температуре +40°С и относительной влажности 93% в течение 4 суток, затем с циклическим изменением температуры по 12 часов при +25°С и по 12 часов при +55°С с относительной влажностью не менее 93% в течение еще 4 суток, испытания на коррозию при воздействии газа SO2 в течение 21 суток и т.д. Становится понятно почему по европейским требованиям, сигнал от двух ПИ используется только для включения пожаротушения в автоматическом режиме.

Распространение дыма в помещении

Дым с нагретым воздухом от тлеющего очага поднимается вверх до потолка и распространяется в верхней части помещения в горизонтальной плоскости от очага (рис. 2). Причем непосредственно у перекрытия остается прослойка чистого воздуха. Достигнув вертикальной преграды горизонтальный поток разворачивается и происходит увеличение слоя дыма в верхней части помещения. Таким образом, наибольшая эффективность работы пожарных извещателей обеспечивается при установке горизонтально на потолке в центре помещения, либо вертикально на стене на расстоянии 0,1 – 0,3 м от потолка. Углы помещения практически не вентилируются, соответственно не допускается установка извещателей на потолке ближе 0,5 м к стене и на стене ближе 0,1 м к потолку (рис. 2).

Рис. 2. Распространение дыма от тлеющего очага в помещении

Данная модель распространения дыма справедлива при горизонтальном перекрытии, когда перепад высот в помещении не превышает 600 мм при использовании дымового ИП, или 150 мм при использовании теплового ИП. С увеличением расстояния от очага в горизонтальной проекции дым рассеивается, т.е. снижается его удельная оптическая плотность, поэтому регламентируется максимальное расстояние между дымовыми пожарными извещателями . Таким образом, считается, что стандартный дымовой ИП защищает максимальную площадь 176 м2 в виде круга радиусом 7,5 м. Преимуществом данной формулировки контролируемой зоны является применимость ее к помещениям любой формы от простейших прямоугольных с плоскими стенами до произвольных с изогнутыми стенами, круглых, эллипсоидных, которые все чаще встречаются в настоящее время.

В НПБ 88-2001* «Установки пожаротушения и сигнализации. Нормы и правила проектирования» задан единственный способ расстановки дымовых ИП - в узлах квадратной решетки с максимально допустимым шагом и расстоянием до стены, что применимо только для помещений прямоугольной формы. Этих требования определяют максимальный радиус защищаемой зоны, как половину диагонали квадрата, в углах которого расположены извещатели (рис. 3). Например, для помещения высотой до 3,5 м максимальный шаг квадратной решетки составляет 9 м, диагональ квадрата равна 12,7, а радиус защищаемой зоны ~ 6,36 м. Соответственно максимальная площадь в виде круга, защищаемая дымовым ИП по НПБ 88-2001*, равна 125 м2 .

Рис. 3. Максимальная площадь, защищаемая дымовым извещателем по НПБ 88-2001*

Формирование горизонтального дымозахода

Исходя из направлений распространения дыма в помещении, конструкция дымового точечного извещателя рассчитывается на горизонтальные воздушные потоки. Аэродинамические характеристики дымовой камеры, конструкция дымозахода ИП, защитные конструктивные элементы и т.д. должны обеспечивать достаточно быстрое поступление дыма в чувствительную зону дымовой камеры. Т.е. для адекватной реакции концентрация дыма в дымовой камере должна не значительно отличаться от концентрации дыма в окружающей среде. Причем, чем выше класс ИП, тем тщательнее должна отрабатываться конструкция корпуса ИП, форма дымовой камеры и диаграммы направленности свето и фотодиода оптопары . Повышенные требования по стабильности чувствительности предъявляются к дымовым ИП с несколькими порогами. При установке минимального или максимального уровня их чувствительность не должна выходить за допустимые пределы. Адресно-аналоговый дымовой извещатель должен в реальном масштабе времени передавать на адресно-аналоговый прибор текущее значение оптической плотности с высокой точностью начиная с минимальных концентраций дыма. Следовательно конструкция адресно-аналогового ИП должна обеспечивать практически полное отсутствие зависимости результатов измерений от направления и от скорости воздушных потоков. Кроме того, должна обеспечиваться малая инерционность, т.е. концентрация дыма в оптической камере должна незначительно отличаться от концентрации в окружающей среде.

Все современные дымовые извещатели имеют горизонтально вентилируемые камеры рассчитанные на относительно свободное прохождение воздушного потока в горизонтальном направлении. При этом большое значение имеет площадь дымозахода и его форма. У большинства европейских пожарных извещателей можно найти общие черты: форма извещателя исключает возможность обтекания воздушным потоком корпуса извещателя в горизонтальной и в вертикальной плоскостях. В качестве примера, на рис. 4 показаны дымовые извещатели Систем Сенсор адресно-аналоговые серии 200+ и неадресные серии ЕСО1000.

Рис. 4. Формирование горизонтального дымозахода

Кроме того, важно обеспечить максимальное соотношение площади дымозахода и внутреннего объема дымовой камеры. Хорошая вентилируемость дымовой камеры определяет малую инерционность работы. Эта задача аналогична проветриванию помещения: открытая форточка – вентилируемость очень слабая, скорость поступления воздуха из вне крайне низкая, открытое окно – вентиляция улучшается, несколько открытых окон – еще лучше. Очевидно максимальный уровень вентиляции, максимальная скорость поступления воздуха в круглом помещении будет при наличии только пола и потолка, с практически полностью открытой конструкцией по периметру. Так же и у дымового извещателя наилучшая вентиляция внутреннего объема достигается при максимально возможной площади дымозахода , т.е. при открытой боковой стенке высотой не ниже профиля дымовой камеры.

Большое значение имеет эффективная защита от насекомых, ее отсутствие значительно сужает область применения дымового извещателя . Попытки сэкономить на дополнительных конструктивных элементах и выполнить защиту в виде щелей непосредственно в корпусе извещателя приводят к резкому снижению площади дымозахода и обеспечивают только условную защиту по пыли на уровне IP4Х. Кроме того в подобных конструкциях обычно оптическая камера отнесена от дымозахода в корпусе, что дополнительно ухудшает аэродинамические характеристиках извещателя . Сначала дым заполняет внутреннюю часть корпуса и только потом попадает в оптическую камеру. Причем значительная часть воздушного потока может проходить внутри корпуса мимо дымовой камеры. Эффективная защита от насекомых без значительного сокращения площади дымозахода обеспечивается только при использовании металлической или пластиковой сетки с ячейкой менее 1 х 1 мм. На рис. 5 изображен крупным планом дымозаход пожарных извещателей Систем Сенсор.

Рис. 5. Защита дымозахода сеткой

Основные черты конструкции дымозахода извещателей Систем сенсор любой серии:

выступающая часть нижней крышки исключает обтекание корпуса снизу;

стойки крепления нижней крышки исключают обтекание корпуса в горизонтальной плоскости;

отдельные элементы конструкции корпуса образуют воронку, направляющую воздушный поток во внутрь извещателя ;

плоскость дымозахода расположена перпендикулярно горизонтальному воздушному потоку;

обеспечена максимальная площадь дымозахода , его высота равна высоте дымовой камеры;

дымовая камера защищена металлической или пластиковой сеткой, которая практически не снижает площадь дымозахода и обеспечивает надежную защиту от насекомых;

защитная сетка непосредственно примыкает к дымовой камере, что исключает затраты времени на заполнение дымом корпуса извещателя .

Конструкция дымовой камеры

Основой дымового оптико-электронного извещателя является оптическая камера и оптопара . Конструкция камеры должна одновременно удовлетворять ряду противоречивых требований, например, обеспечить свободный доступ для горизонтальных воздушных потоков и исключить влияние внешнего света, электромагнитных помех, пыли, насекомых и т.д. Все крупные производители пожарных извещателей уделяют огромное внимание разработке оптической камеры, поскольку именно она определяет основные характеристики ИП. Для решения этой сложнейшей технической задачи используются методы математического моделирования и экспериментальные исследования. Причем оптимизируется одновременно конструкция дымовой камеры, диаграммы направленности светодиода и фотодиода, а так же их расположение. Поэтому «заимствование» конструкций оптических камер ведущих производителей, при использовании стандартных свето - и фотодиодов, с широкими диаграммами и с неотъюстированными оптическими осями не дает удовлетворительных результатов. В добавок не достаточно высокий уровень конструкторской проработки приводит к «появлению» в дымовой камере посторонних элементов, например, электролитических конденсаторов, которые не удалось разместить в другом месте, а использование некачественного пластика вызывает деформацию первоначальной формы камеры, что в итоге определяет реальные характеристики не выше, чем при использовании более простых конструкций.

Отношение уровня сигнала фотодиода, при котором активизируется извещатель , к величине фонового сигнала определяет его помехозащищенность. Для повышения чувствительности и помехоустойчивости при отсутствии дыма минимальный уровень сигнала должен поступать на фотодиод. Для этого камера изготавливается из пластика черного цвета и с матовой поверхностью. Конструкция дымовой камеры также должна одновременно обеспечивать свободный проход воздуха и значительное ослабление излучения от внешних источников света. Требования противоречивые и их одновременное выполнение возможно только при использовании достаточно сложных конструкций. Кроме того, неизбежное накопление пыли, как правило, серого цвета, на стенках дымовой камеры, приводит к повышению сигнала фотодиода, что со временем вызывает ложные срабатывания. Излучение светодиода отражается от запыленных стенок оптической камеры так же, как от частиц дыма. Этот эффект определяет необходимость периодического проведения технического обслуживания дымовых оптико-электронных извещателей , которое заключается в разборке извещателя и чистке его дымовой камеры.

Примеры горизонтально вентилируемых дымовых камер

В современных дымовых пожарных извещателях обычно используются горизонтально вентилируемые дымовые камеры с боковым дымозаходом , которые согласованы с горизонтальными воздушными потоками (рис. 7). Для защиты от света по периметру дымовой камеры обычно располагается периодическая структура из вертикальных пластинок определенной формы, что исключает прямое попадание света на фотодиод.

Рис. 7. Примеры конструкций дымовых камер

Рассмотрим примеры конструкций горизонтально вентилируемых дымовых камер. На рис. 7 а) показана дымовая камера с защитными пластинками в виде двух плоских планок, соединенных под прямым углом. Внешний свет отражается несколько раз от черных поверхностей и значительно ослабляется прежде чем попадет во внутреннюю часть камеры. С другой стороны, часть излучения светодиода попадает между пластинками, что определяет меньшее увеличение фонового сигнала при появлении пыли на поверхности дымовой камеры по сравнению со сплошной боковой стенкой. Для выравнивания чувствительности от направления дымозахода расположение пластинок не является полностью периодическим: пары пластинок, расположенные по оси симметрии соединены между собой.

В конструкции на рис. 7 б) для повышения защиты от внешнего света пластинки имеют выступ, направленный в угол соседней пластинки. Во внутрь дымовой камеры обращена плоская поверхность пластинки, срезанная как бы по окружности, что приводит к более быстрому увеличению фонового сигнала при осаждении пыли.

На рис. 7 в), 7 г) показаны примеры дальнейшей модификации формы пластинок предыдущей конструкции. Относительный размер наружной планки значительно увеличен, по форме пластинки напоминают букву «Т». Это дает несколько большую защиту от света, однако при этом значительно снижается площадь дымозахода за счет уменьшения просвета между пластинками и сокращения их числа. К тому же, воздушный поток для захода в дымовую камеру и для выхода из нее должен несколько раз резко изменять направление движения, что определяет дополнительное повышение аэродинамического сопротивления. Диаграммы направленности оптопары формируются отверстиями в конструкциях перед свето - и фотодиодом, а не оптической системой, что приводит к снижению энергетического потенциала системы.

Подобные конструкции обычно используются в однопороговых традиционных извещателях .

Конструкция дымовой камеры адресно-аналогового извещателя

Тщательная проработка конструкции дымовой камеры, с использованием методов математического моделирования и натурных испытаний, позволяет если не исключить полностью, то снизить до минимума проявление отрицательных эффектов. Например, на рис. 8 приведена конструкция камеры Систем Сенсор, которая используется в большинстве адресно-аналоговых дымовых и комбинированных 2-х, 3-х и 4-х канальных извещателях последних поколений.

Основные характерные особенности:

  • сложная форма пластинок (рис. 9 а), расположенных по периметру камеры, обеспечивает более высокую степень защиты от внешнего света, по сравнению с пластинками с плоскими поверхностями;
  • плавные изгибы вертикальных пластинок не оказывают значительного сопротивления воздушным потокам;
  • внутрь дымовой камеры обращены заостренные карая пластинок, и большая часть излучения светодиода попадает между пластинками, что максимально снижает уровень фонового сигнала;
  • рифленые поверхности дна и крышки камеры уменьшают, по сравнению с плоскими поверхностями, уровень отраженного сигнала, т.к. подсвечиваются только выступающие части;
  • значительное снижение площади внутренней поверхности камеры, за счет острых краев пластинок и рифления дна и крышки, определяет низкий уровень фонового сигнала и его незначительное увеличение при накоплении пыли;
  • воздушные каналы, создаваемые удлиненными пластинками рядом с фотодиодом и светодиодом практически полностью исключают зависимость чувствительности от направления воздушного потока без ограничения доступа с наиболее чувствительных направлений;
  • эффективная экранировка фотодиода и электронной схемы исключают влияние электромагнитных помех по европейским требованиям.

Рис. 8. Конструкция оптической камеры адресно-аналогового дымового извещателя

Рис. 9. Фрагмент чертежа дымовой камеры адресно-аналогового извещателя

Подобная конструкция в адресно-аналоговом извещателе обеспечивает высокую точность измерения оптической плотности среды при незначительных уровнях задымления и малых скоростях движения воздуха. Это позволяет адресно-аналоговому приемно-контрольному прибору анализировать динамику процесса и формировать предварительные сигналы на сверхранних этапах развития пожароопасной ситуации.

Конструкция многопороговых дымовых извещателей

В дымовых интеллектуальных извещателях Систем Сенсор неадресных ПРОФИ и адресных Леонардо реализован комплексный подход к оптимизации конструкции, при котором отдельные конструктивные элементы одновременно выполняют несколько функций.

Рис. 10. Конструкция извещателей серий ПРОФИ и ЛЕОНАРДО

Рис. 11. Конструкция дымовой камеры извещателей ПРОФИ и ЛЕОНАРДО

Корпус извещателя имеет горизонтальный дымозаход , защищенный от насекомых сеткой, размещенной в крышке дымовой камеры (рис. 10). Абсолютно круглая в горизонтальной плоскости дымовая камера обеспечивает одинаково высокую чувствительность при поступлении дыма с любого направления (рис. 11). Сложная форма пластинок, расположенных по ее периметру, обеспечивает одновременно хорошую продуваемость и защиту от внешнего света. Незначительное аэродинамическое сопротивление определяет отсутствие снижения чувствительности при малых скоростях воздушного потока. Оптопара , расположенная на «втором этаже», чуть выше дымозахода , защищена от пыли, которая в основном скапливается на дне крышки дымовой камеры. Форма дымовой камеры оптимизирована со специально разработанными для этих серий извещателей инфракрасными светодиодами и фотодиодами. Узкая диаграмма светодиода с двумя максимумами позволяет создать равномерно высокий уровень освещения в центральной части дымовой камеры, в секторе ± 100 и снизить освещение боковых стенок камеры. Диаграмма направленности фотодиода также имеет ширину примерно ± 100 с направлением максимума в центральную часть дымовой камеры (рис. 12). Таким образом, обеспечивается снижение фонового сигнала, принимаемого фотодиодом за счет переотражения от стенок камеры, и увеличение сигнала при появлении дыма. Повышение направленности оптопары оптическими элементами эквивалентно увеличению отношения сигнал/фон. Точная юстировка оптических осей при установке кристаллов светодиодов и фотодиодов определяет стабильность чувствительности извещателей . Свето - и фотодиод имеют SMD исполнение и устанавливаются на плате одновременно с остальными электронными компонентами с обеспечением точной ориентации.


Рис. 12. Диаграммы направленности

Рис. 13. Герметизация печатной платы

При изготовлении дымовой камеры, по ее периметру со стороны печатной платы в ту же форму, для обеспечения прочности соединения, добавляется красный эластичный пластик (рис. 13). Этот слой, в виде двойной прокладки, обеспечивает герметизацию электронной схемы извещателя и ее защиту не только от влаги, но и от коррозии. Чтобы не нарушать герметичность в месте установке индикаторов (кристаллы красного и зеленого светодиодов), сигналы предаются через световод , установленный в корпусе дымовой камеры.

На печатной плате хорошо видны круглые контактные площадки (рис. 14), которые используются для подключения игольчатых контактов при проведении компьютерного тестирования. В процессе тестирования осуществляется контроль элементов, статические и динамические характеристики устройства. Число контрольных точек на печатной плате определяют глубину тестирования извещателя в процессе изготовления.

Рис. 14. Электроника извещателя

Большое внимание уделено защите от электромагнитного воздействия. Высокая степень интеграции и миниатюризация позволили выполнить практически все электрические соединения в одном слое печатной платы и использовать второй слой для экранировки. Так же заэкранирован фотодиод (рис. 14), а SMD исполнение позволило до минимума сократить длину его выводов. Без экранировки входных цепей усилителя сигнала и выводов светодиода в срвременных условиях невозможно избавиться от наводок от внешних электромагнитных помех и избежать ложных срабатываний без загрубления чувствительности извещателя . Отсутствие экранировки в извещателях определяет наличие ложных срабатываний в реальных условиях. Причем отсутствие ложных срабатываний в извещателе без экранировки, скорее всего, указывает на недопустимо низкий уровень чувствительности. Даже в обычном офисном или жилом здании может появляться значительный уровень электромагнитных помех от сотовой связи, офисных радиотелефонов, от включения и выключения различных силовых установок, от работы мобильных средств св язи различных служб и т.д. При этом возможно как прямое детектирование электромагнитных сигналов на входных цепях усилителя сигнала фотодиода, так и наводки на другие электрические цепи извещателя и на шлейфы сигнализации. Незначительное запыление дымовой камеры или уход порога срабатывания приводят к увеличению вероятности «ложняка ». Наличие ложных срабатываний следует классифицировать как неисправность системы пожарной сигнализации, практически наравне со снижением чувствительности или с отказом извещателя .

Использование эффективной конструкции дымовой камеры, стабилизация и контроль чувствительности обеспечивают в извещателях серии ЛЕОНАРДО и ПРОФИ возможность корректировки заводского уровня чувствительности 0,12 дБ/м, на 0,08 дБ/м, или на 0,16 дБ/м в зависимости от типа объекта. При этом чувствительность не изменяется в диапазоне рабочих температур от -30°С до +70°С и при накоплении пыли в течении нескольких лет. Ложные срабатывания отсутствуют даже на верхнем уровне чувствительности в сложной электромагнитной обстановке.

Линейные оптико-электронные дымовые пожарные извещатели .

Дымовые линейные извещатели широко используются в системах пожарной безопасности. Они незаменимы в помещениях с высокими потолками и большими площадями, имеют максимальную чувствительность по черным дымам. Отмечается более раннее обнаружение возгорания линейным извещателем по сравнению с точечными дымовыми извещателями в реальных условиях.

Существует несколько типов линейных дымовых пожарных извещателей . Наиболее распространенные двухкомпонентные линейные ПИ состоят из передатчика и приемника, которые размещаются на противоположных сторонах защищаемой зоны. Приемник принимает сигнал передатчика и сравнивает его уровень с величиной, соответствующей чистой среде. Появление дыма между приемником и передатчиком вызывает затухание сигнала и приводит к формированию сигнала ПОЖАР (рис. 1).

Рисунок 1 - Принцип действия оптико-электронного линейного дымового извещателя

Рисунок 2 - Линейный извещатель 6424

Линейный дымовой извещатель обеспечивает лучшую эффективность по обнаружению различных типов пожаров, по сравнению с точечными оптико-электронными, ионизационными и тепловыми извещателями (таблица 1).

Таблица 1 - Чувствительность пожарных извещателей к тестовым очагам пожара
(О - отлично обнаруживает; Х - хорошо обнаруживает; Н - не обнаруживает)


Необходимо также отметить, что все современные линейные извещатели имеют несколько порогов чувствительности и компенсацию запыления оптики и светофильтров, что позволяет учесть условия эксплуатации, исключить ложные срабатывания и снизить расходы на техническое обслуживание. У точечных извещателей данные функции реализованы только в адресно-аналоговых системах и в наиболее продвинутых пороговых, например в последних сериях Систем Сенсор ПРОФИ и Леонардо. Это объясняется жесткими ограничениями по массогабаритным характеристикам и по электропотреблению, налагаемыми на точечные пожарные извещатели .

Типы линейных извещателей

Линейные дымовые извещатели можно разделить на два крупных класса: двухкомпонентные, состоящие из отдельных блоков приемника и передатчика, и современные однокомпонентные - один блок приемо-передатчика с пассивным рефлектором. Построение линейного извещателя определяет требования к техническим характеристикам компонент, их конструкции и размещению. Для двухкомпонентного извещателя необходимо обеспечить стабильный уровень сигнала передатчика во всем диапазоне рабочих температур и напряжений питания, т.к. снижение уровня сигнала передатчика приводит к формированию ложного сигнала ПОЖАР. Приемник должен обеспечивать хранение значения уровня опорного сигнала в энергонезависимой памяти приемника и корректировку порога срабатывания при запылении оптики в процессе эксплуатации.

Кроме того, для увеличения энергетического потенциала в приемнике и передатчике используются оптические системы, обеспечивающие достаточно узкие диаграммы направленности. Такое построение определяет сложность настройки и эксплуатации линейных извещателей . Для обеспечения работоспособности необходимо проведение достаточно трудоемкой юстировки, при которой устанавливается положение приемника и передатчика, соответствующее приему максимума сигнала. Изменение положения приемника или передатчика в процессе эксплуатации вызывает отклонение диаграммы направленности, снижение уровня сигнала и формирование ложного сигнала ПОЖАР, который не сбрасывается без переюстировки извещателя . После сброса производится сравнение пониженного за счет разъюстировки уровня сигнала с уровнем сигнала при чистой оптической среде и выдается подтверждение сигнала ПОЖАР. Ситуация для извещателя не отличается от подтверждения сигнала ПОЖАР при наличии дыма. Соответственно, крепление приемника и передатчика допускается только на капитальные конструкции. Форму диаграммы направленности выбирают таким образом, чтобы незначительное смещение опорных конструкций не нарушало работоспособность линейного извещателя . Обычно допускается в процессе эксплуатации смещение максимума диаграммы направленности относительно оптической оси в пределах порядка ±0,5°, что соответствует при расстоянии между приемником и передатчиком 10 метров смещению луча на ± 87 мм, а при расстоянии 100 метров - на ± 870 мм.

Для обеспечения работы двухкомпонентных извещателей при различных дальностях обычно требуется использование нескольких уровней сигнала передатчика и регулировка усиления приемника, что создает дополнительные трудности при настройке и юстировки. Другой существенный недостаток - необходимость подключения и передатчика и приемника к источнику питания - это значительный расход кабеля обычно превышающий расстояние между приемником и передатчиком. Кроме того, при установке в одном помещении параллельно нескольких линейных извещателей необходимо исключить попадание на приемник сигналов от соседних передатчиков. Некоторые производители в этом случае рекомендуют устанавливать приемники и передатчики в шахматном порядке, что приводит к дополнительному увеличению расхода кабеля и монтажных работ. Причем монтаж этой части шлейфа обычно затруднен из-за высоких потолков, или из-за необходимости выполнения скрытой проводки.

Практически все эти недостатки отсутствуют у однокомпонентных дымовых линейных извещателей , в которых приемник и передатчик размещены в одном блоке, а на противоположной стороне располагается пассивный рефлектор не требующий питания (рис. 6). Он состоит из большого числа призм, структура которых обеспечивает отражение сигнала в направлении источника. Подобная конструкция используется в автомобильных катафотах . Таким образом, рефлектор не требует не только питания, но и юстировки. Соответственно в несколько раз сокращается расход кабеля, трудоемкость монтажа и юстировки.


Рисунок 6 - Внешний (вверху) и внутренний (внизу) вид однокомпонентного извещателя 6500R/6500RS и рефлектора

Более того, рефлектор может быть установлен на некапитальные и даже вибрирующие конструкции. Допускается изменение положения рефлектора в пределах ±10°. При больших углах появляется снижение уровня отраженного сигнала за счет уменьшения проекции рефлектора на плоскость перпендикулярную оптической оси, т.е. за счет уменьшения эквивалентной площади рефлектора.

Размещение приемника и передатчика в одном блоке обеспечивает возможность автоматического выбора диапазона измерения уровня сигнала при юстировке, автоматическую подстройку уровня излучения передатчика и коэффициента усиления приемника в зависимости от дальности контролируемой зоны.

Кроме того, дополнительно появляется возможность временной селекции сигналов, возможность использования одного рефлектора при близком расположении двух-трех извещателей , возможность компенсации изменения оптической плотности не связанной с возникновением пожароопасной ситуацией в течение суток для исключения ложных срабатываний и т.д.

Значительно упрощается и контроль чувствительности однокомпонентного линейного извещателя . Вместо использования оптических фильтров можно обеспечивать ослабление сигнала путем блокировки соответствующей площади рефлектора. Для случая равномерного облучения рефлектора имеется простая зависимость затухания сигнала от величины его площади. Этот способ реализован в однокомпонентном извещателе 6500 Систем Сенсор. На его рефлекторе нанесена шкала от 10% до 65% с дискретом 5%, покоторой определяется величина затухания сигнала при изменении площади затенения(рис. 7). Таким образом, можно с высокой точностью измерить чувствительность извещателе 6500 на любом из четырех порогов 25%, 30%, 40%, 50%.

Рисунок 7 - Шкала проверки чувствительности извещателя

Линейный дымовой извещатель защищает зону протяженностью до 100 - 200 метров и, соответственно, заменяет в зависимости от длины и высоты помещения более 10 - 20 точечных дымовых извещателей . Сложность монтажа, тестирования и технического обслуживания точечных дымовых извещателей при наличии высоких полков определяет дополнительные преимущества линейных извещателей . Причем установка точечных извещателей в помещениях высотой более 12 метров запрещена из-за резкого снижения их эффективности: дым при достижении потолка распространяется на большую площадь, соответственно снижается его удельная плотность и соответственно увеличивается время определения возгорания. Этот эффект практически не влияет на работоспособность линейного извещателя , т.к. снижение удельной оптической плотности компенсируется увеличением протяженности задымления (рис. 8). Высокая эффективность линейных извещателей в таких условиях определила возможность защиты помещений значительной высоты. По европейским рекомендациям линейные извещатели допускается устанавливать для защиты людей в помещениях высотой до 25 метров, а для защиты имущества - до 40 метров в один ярус. При этом расстояние между оптическими осями выбирается в пределах от 9 до 15 метров и не требуется его уменьшение при увеличении высоты помещения.

Рисунок 8 - Распределение дыма в помещении с высоким потолком

По российским требованиям, приведенным в НПБ 88-2001* "Установки пожаротушения и сигнализации . Нормы и правила проектирования") в помещениях высотой до 12 метров расстояния между оптическими осями не должны превышать расстояний между рядами точечных дымовых извещателей при той же высоте. Т.е. никаким образом не учитывается различие физических процессов при дымоопределении точечным и линейным извещателем . Более того в помещениях высотой от 12 до 18 метров предписана двухъярусная установка линейных дымовых извещателей . Требуется установка дополнительного яруса линейных извещателей на высоте 1,5 - 2 метра от уровня пожарной нагрузки, но не менее 4 метров от плоскости пола. Т.к. размещение линейных извещателей в помещениях выше 18 метров нормами вообще не предусмотрено, то на практике в некоторых случаях применяют трехъярусную установку, хотя увеличение высоты помещения с большим запасом можно компенсировать установкой более высокой чувствительности. Такое положение определяет в некоторых случаях к выбору более дешевого и менее эффективного оборудования.

Перечень нормативно-технической документации, требования которой необходимо учитывать при изучении данной темы.

1. СП 5.13130.2013 Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования.

2. НПБ 58-97 Системы пожарной сигнализации адресные. Общие технические требования.

3. НПБ 65-97. Извещатели пожарные дымовые оптико-электронные. Общие технические требования.

4. РД 78.145-93. Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ.

5. Пособие к РД 78.145-93.

6. НПБ 66-97 Извещатели пожарные автономные. Общие технические требования.

7. НПБ 70-98 Извещатели пожарные ручные. Общие технические требования.

8. НПБ 71-98 Извещатели пожарные газовые. Общие технические требования.

9. НПБ 72-98 Извещатели пламени пожарные. Общие технические требования.

10. НПБ 76-97 Извещатели пожарные. Общие технические требования.

11. НПБ 81-99 Извещатели пожарные дымовые радиоизотопные. Общие технические требования.

12. НПБ 82-99 Извещатели пожарные дымовые оптико-электронные линейные. Общие технические требования. Методы испытаний.

13. НПБ 85-2000 Извещатели пожарные тепловые. Технические требования пожарной безопасности.

14. СП 54.13130.2011 Свод правил. Здания жилые многоквартирные. Раздел 7. Пожарная безопасность.

15. Статьи И.Г. Неплохова по пожарным извещателям .

16. www .txcom.ru .

17. www.tinko.ru .

18. www.kvarta-kmv.ru .

19. www. signaldoma.ru .

Вопросы для самопроверки.

1. Отклассифицируйте пожарные извещатели по виду зоны обнаружения.

2. Отклассифицируйте пожарные извещатели по принципу обнаружения?

3. Объясните принцип обнаружения пожарного дымового точечного оптико-электронного извещателя .

4. Объясните принцип обнаружения пожарного дымового линейного оптико-электронного извещателя .

5. Почему радиоизотопный извещатель не получил широкого распространения ?

Такое утверждение было бы неверным, так как каждый прибор имеет свои преимущества и недостатки и может использоваться в определенных ситуациях.

Поэтому рассмотрим все из выпускаемых промышленностью элементов системы, более подробно изучив извещатели.

Что представляет собой данный прибор?

Это небольшая пластиковая коробочка в которой находятся различные датчики, в зависимости от вида устройства, реагирующие на одну из характеристик пожара. Иногда в корпусе располагается два прибора, в таком случае извещатель называют комбинированным.

Назначение извещателя – формирование и подача сигнала о появлении очага возгорания на пульт дежурного.

Основные виды и принцип их работы

Поскольку каждый прибор может контролировать только один из физических параметров, свойственных возгоранию, то различают следующие виды пожарных извещателей:

  • Дымовые
  • Тепловые
  • Пламени
  • Ионизационные
  • Комбинированные
  • Ручные

Однако среди приборов, относящихся к одному виду существуют модификации, отличающиеся по многим параметрам.

Смотрим о датчиках дыма, принцип работы:

Дымовые пожарные датчики устанавливают в зонах, где в начале возгорания появляется дым. Они сравнивают поступающий электрический сигнал с контрольным значением, формируемым схемой прибора. Входящий в него светодиод формирует импульсы, подаваемые на фотоприемник.

Попадание частиц дыма в оптическую камеру прибора приводит к усилению сигнала и превышению им контрольных данных. Если такая ситуация повторяется в течении пяти повторных сравнений, то датчик регистрирует сигнал «пожар». При этом уменьшение выходного сопротивления устройства, приводит к срабатыванию и передаче сигнала на ПКП.

Возвращение в исходный режим происходит после снятия прибора с питания на срок от 3 с. Датчики дыма различных модификаций имеют чувствительность до 0,2 дБ/м.

Применение дымовых датчиков допускается в следующих условиях:

  • При температуре от -40 до +60° С
  • Влажности до 98%
  • Ветре до 10 м/с

Тепловые приборы пожарной сигнализации используют для фиксации изменения температуры в результате появления очага возгорания на под контрольном объекте. Сигнал от них на ПКП передается замыканием шлейфа.

Смотрим видео о устройстве и принципе работы теплового датчика:

Принцип действия таких устройств состоит в измерении температуры окружающей среды через короткие промежутки времени. Каждый проход приводит к свечению светодиода. Превышение контрольного значения температуры создает импульс с большой амплитудой и приводит к замыканию ключа. При этом ток пройдя через диодный мост поступит в шлейф, что приведет к включению светового элемента и срабатыванию КПК.

Тепловые датчики применяются для ежедневной круглогодичной работы в жилых и промышленных помещениях. Они способны использоваться в комплексе с ПКП имеющими шлейф постоянного или переменного тока. Не допускается применение данных устройств на химическом производстве, где возможно воздействие агрессивными средами, а также при отрицательной температуре.

После того как , его нужно установить в зоне, где начальная стадия пожара сопровождается появлением открытого огня. Внутри прибора располагается элемент фиксирующий появление огня. Причем в верхней части корпуса электронного блока располагается его окно, а в нижней – индикатор «пожар».

Смотрим видео об извещателях пламени:

Автоматическая оптоэлектронная схема, входящая в состав датчика, обнаружив загорание в зоне контроля, тут же передает сигнал в шлейф и на светодиод в корпусе прибора. Появление огня фиксируется через окно, расположенное на чувствительном элементе, откуда передается на фотоприемник и преобразуется в электрический сигнал. Он обрабатывается по специальному алгоритму и только потом решается вопрос о переключении устройства в состояние «пожар».

Возвращение прибора в состояние выключено осуществляется при снятии напряжения питания на срок от 2 с. Автоматические пожарные извещатели рассчитаны на постоянную бесперебойную работу по двухпроводному шлейфу с ПКП различных типов.

Ручные датчики используются для активации сигнала тревоги в случае возникновения очагов возгорания. Конструктивно он представляет собой пластиковый корпус снаружи которого располагается кнопка или рычаг, их включение приводит к увеличению сопротивления шлейфа (уменьшению внутреннего) и подсветке индикатора.

Рассчитаны на непрерывную работу в закрытых помещениях и на улице в комплексе с различными модификациями ПКП.

Питание прибора, а также передача сигнала тревоги выполняются по двухпроводному шлейфу противопожарной сигнализации.

Ионизационные датчики или радиоизотопные срабатывают в результате воздействия дыма на ток внутренней камеры прибора. Их принцип работы связан с ионизацией воздуха в результате его радиоактивного облучения. Попадание в камеру противоположно заряженных электродов, приводит к возникновению ионизационного тока, при снижении подвижности частиц он уменьшается, что приводит к формированию сигнала тревоги.

Рассматриваемые датчики успешно применяются в дымах любой природы, но имеют значительный недостаток – использование в них источника радиации. Эта особенность привела к запрету на монтаж пожарных извещателей данного типа в зданиях, где постоянно присутствуют люди. Поэтому большого спроса на такие датчики не наблюдается.

Пожарные комбинированные извещатели – устройство в корпусе которого объединены два различных датчика, например, тепловой и дымовой. Формирование сигнала в таких приборах происходит после анализа информации с каждого устройства.

Назначение и популярные марки

Пожарные беспроводные извещатели являются основным элементом сигнализации. Они в своем роде ее глаза, так как способны зафиксировать появление очага возгорания на начальном этапе и передать сигнал о его появлении на ПКП.

На рынке они представлены продукцией от зарубежных и отечественных производителей. Наибольшей популярностью пользуются радиоканальные пожарные извещатели компаний:

  • РЭЗ Спецавтоматика
  • Риэлта
  • Эталон

Их продукция относится к сегменту средней ценовой категории, имеет высокое качество, в связи с применением комплектующих от мировых лидеров. Она доступна практически для всех желающих и может эксплуатироваться на протяжении длительного промежутка времени.

Оценивая типы пожарных извещателей необходимо учитывать не только технические характеристики продукта, но и конструктивные особенности помещения. Например, пожарный датчик для сауны не может быть тепловым, так как в ней постоянно высокая температура, изменение которой и фиксирует данный прибор. Для таких помещений лучше выбирать дымовые или датчики пламени.

На нефтебазах, предприятиях, имеющих взрывоопасное производство и других аналогичных помещениях лучше устанавливать извещатели пожарные взрывозащищенные. Их конструктивные особенности позволят функционировать приборам даже в критической ситуации.

Как видите в зависимости от специфики помещения выбирается и вид датчика. Поэтому назвать один из них самым лучшим нельзя. С точки зрения эффективности работы наибольший интерес вызывают комбинированные модели, так как они фиксируют сразу два параметра, свойственных возгоранию. Именно они смогут определить возникновение очага возгорания на самом раннем этапе.

Пожарные извещатели (датчики, детекторы) являются основными устройствами системы пожарной сигнализации. Их основное назначение – контроль и оперативное выявление различных факторов возгорания:

Пожарные извещатели (датчики, детекторы) являются основными исполнительными устройствами системы пожарной сигнализации. Их основное назначение контроль и оперативное выявление различных факторов пламени:

  • температура;
  • излучение.

После этого осуществляется передача тревожного сигнала на приемно-контрольное устройство.

Классификация пожарных извещателей производится по целому ряду технических и эксплуатационных характеристик устройств. Она помогает осуществить выбор правильного устройства, наиболее эффективного для решения конкретных задач.

ОБЩАЯ КЛАССИФИКАЦИЯ ПОЖАРНЫХ ИЗВЕЩАТЕЛЕЙ

По типу передаваемого сигнала

Пороговый.

Контролирует только один параметр и при превышении критического значения подает сигнал тревоги.

Аналоговый.

Передаёт на приемно-контрольный прибор (ПКП) величину измеряемого параметра. Функцию анализа данных и принятие решения о выявлении очага возгорания берет на себя ПКП.

Неадресный.

Наиболее простые устройства, соединенные последовательно в один шлейф. Срабатывание хотя бы одного из них вызывает срабатывание всего шлейфа. Оператор не знает где именно был обнаружен очаг возгорания, поэтому целесообразно выделить один шлейф для контроля одного помещения или этажа.

Адресно-опросный.

Приемно-контрольный прибор передаёт запрос на удаленное устройство и помимо тревожного сигнала получает информационное сообщение о месте нахождения прибора.

Адресно-аналоговый.

Извещатель, в зависимости от модели, передаёт на ПКП кроме тревожного сигнала несколько типов информационных уведомлений: работоспособность устройства, уровень заряда батареи, целостность корпуса, месторасположение и текущий показатель контролируемого фактора.

ПОВТОРНОЕ ИСПОЛЬЗОВАНИЕ ПОСЛЕ СРАБАТЫВАНИЯ

Большинство современных пожарных извещателей являются многоразовыми. Переход в дежурный режим может выполняться различными способами.

Подачей команды с пульта охраны или переводом механического переключателя на самом устройстве/

Автоматически.

Прибор самостоятельно переходит в дежурный режим после сброса тревожного режима на ПКП.

Существуют модели (температурные датчики) у которых при срабатывании разрушается чувствительный элемент. Использование оборудования такого типа возможно только после замены разрушаемого сенсора.

Это создает трудности при проверке работоспособности и замене вышедшего из строя извещателя.

ТИП ЗОНЫ ОБНАРУЖЕНИЯ

Точечные извещатели определяют признаки возгорания в месте установки. Линейные контролируют параметры в промежутке между блоками (передатчиком и приемником).

СПОСОБ СКАНИРОВАНИЯ

Пассивный.

Чувствительный элемент реагирует на динамику измеряемого параметра непосредственно в корпусе устройства: изменение температуры и химического состава воздуха, задымление и т.п.

Активный.

Генерирует инфракрасное или ультрафиолетовое излучение и по степени его изменения анализирует контролируемый параметр.

ПОДРАЗДЕЛЕНИЕ ПО ПРИНЦИПУ ДЕЙСТВИЯ

Основным критерием, влияющим на область использования пожарных извещателей, является параметр, по которому осуществляется выявление очагов возгорания.

По принципу обнаружения различают следующие типы:

  • газовые;
  • пламени;
  • ручные.

Дымовые извещатели пожарной сигнализации.

Реагируют на размеры и концентрацию аэрозольных частиц, образующихся при реакции горения. Различают следующие типы таких устройств:

1. Оптико-электронные – принцип действия основан на рассеивании или отражении излучения, поступающего от светодиода к фотоэлементу.

2. Ионизационные - в качестве средства ионизации применяются электро-индукционные катушки или изотопные вещества (америций-241).

Дымовые извещатели используют для контроля жилых, коммерческих и общественных сооружений, к которым предъявляют обычные требования по пожарной безопасности. Как правило, в помещении (если позволяет площадь) устанавливается два дымовых пороговых датчика или один адресно-аналоговый.

Тепловые.

В качестве чувствительного сенсора биметаллические сплавы, магнитные или оптоволоконные элементы, термопара или терморезистор.

Независимо от моделей и способов срабатывания срабатывание устройства происходит либо при достижении температуры в помещении порогового значения (максимальные датчики), либо при резком возрастании температуры (дифференциальные датчики).

Тепловые датчики используются в помещениях складов, производственных сооружениях и других местах, где хранятся горючие материалы, выделяющие при горении больше тепла, чем дыма.

Им отдают предпочтение, если конвекционные и воздушные потоки в помещении препятствуют движению дыма в местах установки пожарных детекторов. Также они используются, если технологические процессы на производстве связаны с выделением копоти или пыли.

Газовые.

Устройства реагируют на повышенную концентрацию угарного газа (оксида углерода) и другие углеводородные соединения. Используются для обнаружения возгорания на стадии пиролиза (тления).

Целесообразно применять для защиты следующих объектов:

  • производственные сооружения связанные с обработкой древесины, целлюлозно-бумажных, табачных и полимерных изделий;
  • склады хранения сыпучих горючих материалов способных к внутреннему трению: хлопок, зерновые, измельченное твердое топливо и т.п.;
  • кабельные галереи и туннели;
  • серверные, кол-центры и другие помещения с электроникой.

Извещатели пламени.

Срабатывают, воспринимая излучение открытого пламени в инфракрасном и/или ультрафиолетовом диапазоне. Применяются на открытых складских площадках и при контроле помещений, где невозможна установка дымовых и тепловых пожарных извещателей.

Ручные пожарные извещатели.

Устройство, осуществляющее принудительную активацию пожарной сигнализации, системы эвакуации или автоматического пожаротушения. Имеет исполнение в виде кнопок или рычажков с прозрачными защитными колпачками.

Устанавливаются на путях эвакуации в соответствии с действующими нормативами.

Применение различных типов извещателей пожарной сигнализации строго регламентируется действующими нормативами, в частности, СП 5.13130.2009. При подборе оборудования обязательно проконсультируйтесь со специалистами.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов