Меню

Очистка сточных вод. Сточные воды ТЭЦ

Устройство крыши

Председатель Руководитель организации

_______________ _______________________

_________2002 г. ______________ 2002г.

Инструкция

по охране труда для

персонала, обслуживающего

бойлерную установку.

    Общие требования безопасности.

    Требования безопасности перед началом работы.

      К работе в должности машиниста тепловых бойлерных установок допускаются рабочие в возрасте не моложе 18 лет, прошедшие медицинскую комиссию и инструктаж по технике безопасности.

      До назначения на самостоятельную работу машинист должен закончить обучение и пройти проверку знаний в комиссии по правилам электробезопасности с присвоением ему второй квалификационной группы.

      Машинист допускается к самостоятельной работе письменным распоряжением начальника участка.

1.4. Периодическую проверку знаний машинист проходит в комиссии предприятия один раз в 12 месяцев.

Внеочередная проверка знаний проводится :

    при введении в действие новых инструкций;

    после аварии и несчастного случая в бойлерных установках;

    при установлении фактов неудовлетворительного знания машинистом инструкций и правил техники безопасности.

1.5. Права и обязанности.

В период своего дежурства оператор имеет право требовать от руководства участка:

    обеспечения бойлерной КИП, инструментом, приспособлениями, инвентарем, оперативными журналами и другими средствами, необходимыми для нормальной и безопасной работы;

    требовать от руководства участка своевременного устранения дефектов оборудования, возникающих в процессе работы;

    производить путем и останов оборудования (бойлеров, насосов) в зависимости от обстановки, для обеспечения нормального снабжения потребителей горячей водой;

    ставить в известность руководство предприятия о всех нарушениях нормальной работы установки в любое время суток;

    требование от руководства обеспечением спец. Одеждой и защитными средствами согласно существующих норм.

      Оператор бойлерной в период своего дежурства обязан:

    бесперебойно обеспечивать потребителей горячей водой с температурой 50-55 о С при минимальном расходе перегретой воды;

    путем систематического осмотра оборудования и анализе параметров воды на потребителя обеспечить безаварийную его работу;

    при обнаружении дефектов в работе оборудования, не допуская вывода его из строя, включить в работу резервное оборудование и остановить оборудование, имеющее дефекты, при отсутствии резерва дефектов оборудование остановить и через начальника участка организовать его ремонт;

    вести контроль за температурой воды, идущей с бойлеров;

    вести оперативный (сменный) журнал, в котором с указанием времени, записывать выполнение операций по пуску и останову оборудования, по переключением в схемах, характеру аварийных ситуаций,основные параметры работы бойлерной в течение чмены, в оперативный журнал необходимо записывать также содержание устных распоряжений руководства предприятия.

1.7. Прием и сдача смены:

    оператор обязан являться на смену заблаговременно и должен путем осмотра ознакомиться с состоянием оборудования и по К.И.П., и по записям в оперативном журнале с режимом работы бойлерной;

    оператор обязан проверит наличие и исправность К.И.П., инструмента, инвентаря, схем, инструкций, средств пожаротушения;

    оператор должен получить от сдающего смену информацию о работе установок и распоряжение вышестоящих руководителей;

    сдающий смену оператор обязан перед сдачей смены подготовить бойлерную к работе без нарушений режима и правил безопасности, обеспечить чистоту и порядок на рабочем месте;

    прием и сдача смены во время аварийного режима не допускается;

    за все нарушения и упущения не выявленные при приеме смены ответственность несет машинист, небрежно принявший смену;

    прием и сдача смены оформляется росписью обоих операторов в сменном журнале.

3. Обязанности во время работы.

      Рабочим местом оператора бойлерной установки является все помещение, в котором расположено оборудование и коммуникации, необходимые для получения горячей воды, а также прилегающая территория, если на ней расположены баки – аккумуляторы и запорно – регулирующая арматура.

      Регулирование температуры горячей воды на потребителя в бойлерной, не имеющих автоматических регуляторов, производится вручную оператором, путем изменения степени открытия задвижек на входе воды в бойлер.

      При повышении температуры горячей воды свыше 60 о С задвижки прикрыть, при понижении ниже 50 о С открыть.

      При снижении давления горячей воды на потребителя до 3,кг/см 2 пустить в работу подпитывающий насос.

      При малых расходах горячей воды потребителями он обеспечивается, используя только давление в водопроводе, не допуская ненужного расхода электроэнергии на подпитку.

      При полном прекращении разбора горячей воды (ночью) задвижки на вводе перегретой воды в бойлере полностью закрыть. В летнее время для обеспечения циркуляции перегретой воды в системе, задвижки перед и после бойлеров необходимо оставлять открытыми.

4. Требования безопасности в аварийных ситуациях.

      При разрыве трубопровода перегретой воды в пределах бойлерной, появление свищей, нарушение плотности соединений, сопровождающие сильной течью горячей воды, оператор обязан срочно отключить поврежденный участок теплосети и поставить в известность руководство, а оператор должен по возможности принять меры, чтобы вода не попадала на электрооборудование.

      При появлении дыма или огня из электродвигателя, электродвигатель немедленно отключить, приступить к ликвидации загорания, применяя углекислотный огнетушитель или песок.

После снятия напряжения с электродвигателя электромонтером, допускается ликвидация загорания водой.

      В случае возникновения загорания в помещении бойлерной пинять меры к его ликвидации первичными средствами пожаротушения, вызвать пожарную охрану, поставить в известность руководство.

      При ожогах необходимо освободить пораженное место от одежды, обуви. Перевязать обоженную поверхность стерильным бинтом и обратиться в лечебное учреждение. Поставить в известность мастера.

      При тяжелых механических травмах пострадавшего положить в безопасное место, придать ему удобное и спокойное положение и вызвать скорую медицинскую помощь (поставить в известность руководителя работ).

      При поражении электрическим током в первую очередь освободить пострадавшего от действия электрического тока (отключить оборудование от сети, отделить пострадавшего от токоведущих частей изолирующими приспособлениями (доски, сухая одежда, резиновые перчатки, резиновые коврики). Если пострадавший потерял сознание, но дышит,его необходимо уложить в удобную позу, растегнуть ворот, дать свежий воздух. Если дыхание отсутствует, пульс не прощупывается, пострадавшему нужно немедленно начать делать искусственное дыхание, желательно по методу «рот в рот» до прибытия врача.

Ответственность.

За нарушение данной инструкции оператор бойлерной несет дисциплинарную и материальную ответственность в соответствии с правилами внутреннего распорядка предприятия, если его действия и последствия нарушения влекут за собой более строгой ответственности вплоть до уголовной.

Инструкцию

составил ______________

Инженер по

Охране труда ______________

Наименование организации

ИНСТРУКЦИЯ

ПО ОХРАНЕ ТРУДА ДЛЯ

ПЕРСОНАЛА, ОБСЛУЖИВАЮЩЕГО БОЙЛЕРНУЮ УСТАНОВКУ.

Эффективная работа теплового оборудования ТЭЦ невозможна без эксплуатации производственной (сетевой и подпиточной) воды нормативного качества. Несоблюдение отраслевых стандартов приводит к:

  • повышенному расходу энергоресурсов;
  • учащению профилактических работ по очистке теплопроводов и теплообменников от нерастворимых образований;
  • ускоренному износу оборудования, внеплановым ремонтам и даже серьезным авариям.

Нормативы подготовки воды для ТЭЦ

Работа водоподготавливающего оборудования теплогенерирующих предприятий (ТЭС, ГРЭС, ТЭЦ и т.п.) регламентируется РД 24.031.120-91, ГОСТ 20995-75, методы контроля качества производственной воды тепловых станций – ОСТ 34-70-953.23-92, ОСТ 34-70-953.13-90, а также прочей техдокументацией и техусловиями.

Ключевые задачи водоподготовки для ТЭЦ:

  • снижение рисков образования наростов на пути теплоносителя, вызванных накоплением взвешенных частиц, солевыми отложениями, биологическими образованиями;
  • препятствование коррозии металлических элементов системы;
  • получение водного и парового теплоносителя высокого качества;
  • повышение КПД тепловых машин и транспортных коммуникаций, как следствие, минимизация эксплуатационных расходов.

Этапы водоподготовки для ТЭЦ

Установки, включенные в схему водоподготовки ТЭЦ, должны обеспечивать, определенные требованиями РД 24.031.120-91 уровни:

Доведение параметров производственной воды до требуемых уровней возлагается на комплекс водоподготовки, включающий следующие основные этапы:

1. Отделение крупных механических и коллоидных взвесей.

На этом этапе водоподготовки для ТЭЦ осуществляется извлечение из подпиточной жидкости нерастворенных частиц, всегда присутствующих в ней в виде мелкого и пылеватого песка, иловых, органических, а также прочих мелкодисперсных составляющих. Механические взвеси усиливают абразивную нагрузку на оборудование ТЭЦ, способствуют увеличению гидравлического сопротивления в трубопроводах за счет формирования твердых отложений на их внутренних стенках.

Рабочим телом традиционных фильтров для улавливания нерастворимых частиц являются насыпные материалы (гравий, песок). Для ультратонкой очистки может использовать более современный вариант фильтрации на основе волоконных мембран.

2. Осаждение осадкообразующих химических соединений.

Методы этого этапа направлены на выделение из раствора ионов элементов, которые при нагреве образуют нерастворимые соединения, накапливающиеся в системе, так же как и механические взвеси. В основном подобная проблема возникает с солями магния, кальция, а также солями и окислами железа.

Задача системы водоподготовки ТЭЦ по обессоливанию питательной воды решается реагентными, обратноосмотическими, ионообменными, магнитными и прочими технологиями промышленного масштаба. В каталоге компании «ВВТ Рус» представлен обширный ассортимент средств немецкого производства для решения этих задач.

3. Связывание коррозионных химических соединений.

Агрессивные химические вещества, присутствующие в водных растворах, представляют не меньшую опасность, чем инертные солевые отложения. К числу таких веществ, в первую очередь, относятся растворенные газы – кислород и углекислота. Они способствуют интенсивной коррозии металлов, причем интенсивность процесса с повышением температуры теплоносителя нарастает лавинообразно. Проблема решается методами дегазации, ионного обмена, введением в теплоноситель профильных реагентов.

Компания ВВТ РУС реализует реагентные составы для химводоподготовки для ТЭЦ в полном соответствии с действующими нормативами. Препараты способны одновременно решать задачи второго и третьего этапов нормализации качества воды для любого оборудования теплоэнергетики. Подобный подход позволяет значительно упростить построение всей схемы водоподготовки, а также обеспечить потребителю экономию средств.

Более подробную информацию о продукции можно получить у наших сотрудников.

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.

Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее .

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.


Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу - вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, ) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на 110-750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок - система 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Теплоэлектроцентрали

Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.

Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.

Основное отличие технологии производства энергии на в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).

Связь с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.

Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.

Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.

По таким схемам сооружаются промышленные с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.

На крупных современных применяются генераторы мощностью до 250 мВт при общей мощности станции 500-2500 мВт.

Такие сооружаются вне черты города и электроэнергия передается на напряжении 35-220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на имеется ГРУ и несколько генераторов соединены по блочным схемам.

К атегория: Водяное отопление

Бойлерные

Бойлерами называют теплообменные аппараты, в которых происходит нагрев воды другим теплоносителем- водой с более высокой температурой по сравнению с нагреваемой или паром. В соответствии с этим бойлеры подразделяются на водоводяные и пароводяные. В зависимости от конструкции пароводяные бойлеры в свою очередь подразделяются на емкие и скоростные.

Бойлерные установки применяют для нагрева воды в системах горячего водоснабжения до температуры +65 °С и нагрева воды, циркулирующей в системах водяного отопления, до температуры +95 °С.

Емкие бойлеры применяются в небольших системах горячего водоснабжения с неравномерным потреблением горячей воды. Скоростные бойлеры могут применяться во всех остальных случаях, в том числе в периоды «пик», и тогда при неравномерном водопотреблении в схему включают баки-аккумуляторы, накапливающие горячую воду при малом водопотреблении и отдающие воду при потреблении, превосходящем расчетную производительность бойлерной установки. Схемы, при которых применяются бойлерные установки, приведены в соответствующих разделах книги.

Емкие бойлеры имеют малое гидравлическое сопротивление по ходу нагреваемой воды, поэтому они могут работать под давлением городского водопровода, подключаемого к нижней части корпуса. В скоростных бойлерах, имеющих значительное гидравлическое сопротивление, движение нагреваемой воды осуществляется за счет работы центробежных насосов.

В зависимости от потребной теплопроизводительно-сти обычно устанавливают несколько бойлеров, работающих параллельно на общую сеть. В мелких неответственных системах горячего водоснабжения допускается установка одного бойлера. В системах центрального отопления устанавливают три бойлера: два рабочих и один - резервный.

Все бойлеры обеспечиваются запорными устройствами, позволяющими отключать их как по греющему, так и по нагреваемому теплоносителю. Для предохранения от разрушения давлением воды или пара бойлеры снабжают предохранительными клапанами, устанавливаемыми непосредственно на его корпусе или на трубопроводе нагреваемой воды между корпусом и задвижкой. Контроль за действием бойлеров осуществляется при помощи термометров и манометров, устанавливаемых на них.

В скоростных пароводяных бойлерах пар подается сверху в межтрубное пространство, а конденсат отводится через нижний штуцер. В емких бойлерах пар подводится в верхний штуцер змеевика, а конденсат отводится через нижний штуцер. У каждого бфйлера устанавливают конденсатоотводчик, обеспечивающий полную конденсацию пара в бойлере. В тех случаях, когда конденсат самотеком стекает в котел, коденсатоотводчик не устанавливают.

Конденсат после отводчиков обычно поступает в общий конденсатопровод, прокладываемый с уклоном к конденсационному баку, куда он и стекает самотеком. Однако возможна работа конденсатоотводчиков и с противодавлением. В этом случае конденсатоотводчик подбирают в зависимости от величины противодавления, т. е. высоты столба воды, на которую она должна подниматься после него. Обычно эта высота не должна превышать 40% величины давления в трубопроводе перед прибором, у которого установлен конденсато-отводчик. Эту величину выражают в метрах водяного столба.

Рис. 1. Установка водоводяного бойлера: а - на стойке; 6 - на стеие

После конденсатоотводчика, работающего с противодавлением, устанавливают обратный клапан, обеспечивающий невозможность выхода конденсата из конден-сатопровода через конденсатоотводчик даже в случае понижения давления в нем.

В водоводяных бойлерах греющая вода при установке их в системах отопления проходит по трубам, а в системах горячего водоснабжения - в межтрубном пространстве.

Общие трубопроводы для группы бойлеров прокладывают по тем же правилам, что и для котельных установок, т. е. также принимают меры по удалению воздуха путем* соблюдения уклонов паропроводов и кон-денсатопроводов, спуска воды и заполнения системы, установки грязевиков, изоляции и т. д.

Бойлеры могут устанавливаться на подставках и различного рода кронштейнах (рис. 1). Между ними должен оставаться зазор, необходимый для монтажа и производства изоляционных работ. При групповой установке бойлеров их размещают попарно, обеспечивая проход не менее 700 мм между каждой парой для работы обслуживающего персонала. Перед каждым бойлером должно быть свободное расстояние, позволяющее при ремонте вынимать из его корпуса змеевик или трубки без снятия бойлера с места.



- Бойлерные